
Procedia Engineering 00 (2015) 1–16

Procedia

Engineer-

ing

www.elsevier.com/locate/procedia

The Automated Generation of Human-Comprehensible
XML Test Sets

Simon Poulding, Robert Feldt
Software Engineering Research Lab,

Blekinge Institute of Technology,
371 79 Karlskrona, Sweden

Abstract

Extensible Markup Language (XML) is often used to encode complex data structures that are the inputs to software,
either in the form of configuration files that the control the behaviour of the software, or the data on which the software
operates. There are typically many domain-specific constraints on the hierarchy of elements in the XML, the attributes
associated with each element, and the types of data that both elements and attributes contain. As a result, the automatic
generation of valid XML inputs is beyond the capabilities of many test data generation techniques.

However it is not su�cient to simply generate test sets consisting of valid XML inputs: the test cases must also
exhibit other properties that facilitate testing. In the absence of an automated oracle it should not be unnecessarily
di�cult for a test engineer to predict the correct output of a test case, and thus a desirable property of a test case is its
comprehensibility by a human.

In this paper we demonstrate the use of the GödelTest framework in generating XML test inputs, and show the gen-
eration strategy can be optimised using Nested Monte-Carlo Search to produce test cases that are more comprehensible
by the test engineer. Moreover, when the validity of the inputs is defined using an XML Schema definition, we show
that it is possible to automate much of the generation process and thereby realise significant savings of time and e↵ort.

c� 2015 Published by Elsevier Ltd.

Keywords: Search-Based Software Testing, Nested Monte-Carlo Search, XML

1. Introduction

The manual generation of test inputs is often time-consuming and labour-intensive, and so any degree
of automation in the generation processes can free up resources that can be invested elsewhere in order to
improve the quality of the developed software. When the software-under-test takes inputs that are complex
data structures in the form of—for example—records, lists, trees, or graphs composed from more primitive
data types, the degree of automation that is possible may be limited. These data structures are often un-
bounded in terms of size and typically have domain-specific constraints on the values that they may contain;
both these characteristics present a challenge for many automated test data generation techniques.

In our previous work we introduced the GödelTest framework for generating test inputs [1]. GödelTest
enables the test engineer to specify the construction of correctly-formed test inputs using a non-deterministic
generating program, and so the framework is particularly suited to the generation of domain-specfic data
structures.

2 S. Poulding and R. Feldt / Procedia Engineering 00 (2015) 1–16

However, it may not su�cient to generate test inputs that simply have a valid structure; the test engineer
will often require the inputs to have other properties, the nature of which will depend on the type of testing
being performed and the quality objectives that are required. When evaluating reliability, for example, the
property required of the test inputs might be that they have a profile similar to that which will be experienced
by the software in operation. When testing scalability, the required property might be that the test inputs
have a particular size. When looking for faults in the software, the required property might be that a small
set of the test inputs cover as much of the software’s code as possible.

A key feature of the GödelTest framework is that it tracks and controls the execution paths taken through
the generating program, and can optimise these paths so that the generating program emits test inputs that
have the properties desired by the test engineer. Our previous work demonstrated how this optimisation
of the test input properties may be achieved in this way by applying Di↵erential Evolution [1] and Nested
Monte-Carlo Search [2] to GödelTest.

In this previous work, the example of a complex data structure we considered was unlabelled general
trees. This data structure presented a su�cient challenge to demonstrate the capabilities of the GödelTest
framework, but was rather abstract in nature. In this paper we demonstrate the use of GödelTest in generating
a more concrete, real-world data structure: Extensible Markup Language, more commonly known as XML.

XML is a format used by many software systems to communicate structured data. An example is Ex-
tensible Business Reporting Language (XBRL), an XML-based standard for the exchange of business infor-
mation [3]. A particular advantage is that, as well as being su�ciently structured to be parsed by software,
XML can also be read and edited by humans and so it is often used to specify the configuration of software
systems as well as data on which the software operates. Masmano et al., for example, describe a hypervisor
for safety critical systems that is configured using XML [4].

XML test inputs must not only conform to the general constraints on structure (e.g. that each opening
tag must have a corresponding closing tag), but the hierarchy and type of elements, attributes, and text must
also satisfy domain-specific constraints. Generating valid XML for the particular software-under-test can
therefore be a di�cult and expensive process that would benefit from automation.

The first contribution of this paper is an automated process that addresses the challenge of generating
domain-specific XML. Not only do we show that GödelTest can automatically generate well-formed XML,
but that we are also able to automate the process of creating the GödelTest generating program from the
XML Schema definition, a standard specificiation language for domain-specific XML. This avoids the need
for the test engineer to develop the generating program manually.

A potential limitation of any technique for automatically generating test data is that the inputs may not
be easy for a human to comprehend. An example of a characteristic that limits comprehensibility is the size
of test inputs that are not bounded in size; Fraser and Arcuri, for example, highlight and manage the issue
of such ‘bloat’ in test inputs generated by a search-based technique [5].

The lack of comprehensibility can be a particular problem when the oracle—the resource used to predict
the correct output of a test case—is a human rather than an automated resource such as an executable model.
If the test inputs are hard for the human to comprehend, not only will the process of predicting the correct
test outputs be costly, but the human is more likely to make mistakes. Even when an automated oracle
is available, test inputs that are di�cult to comprehend may hinder the developer in resolving any faults
detected by the test case.

The second contribution of this paper is demonstrating how the XML test inputs generated by the
GödelTest framework can be optimised in order to improve comprehensibility using Nested Monte-Carlo
Search.

To illustrate both contributions, we perform an empirical study using MathML, an XML format for
describing the presentation of mathematical expressions. We show that the generated test cases achieve
similar code coverage to a manually-derived test set, even though the cost of generating the test cases is
much lower when using the highly-automated GödelTest process. Although fault finding was not an explicit
objective of the study, we additionally report on a number of apparent bugs that were found during this
process.

The paper is structured as follows. Section 2 describes the GödelTest framework, introduces the termi-
nology used to describe XML, and outlines the XML Schema definition language. In Section 3, we describe

S. Poulding and R. Feldt / Procedia Engineering 00 (2015) 1–16 3

function stringGen
word mult(asciiCharGen)
return word

end function

function asciiCharGen
code choose(Int,32,126)
char character with ASCII value code
return char

end function

Fig. 1. GödelTest generating program that emits a string of ASCII characters

how a GödelTest generating program for XML may be automatically constructed from an XML Schema
definition. Section 4 describes the empirical study using MathML. Section 5 places the contributions of this
paper in the context of related work. We conclude the paper and outline future work in Section 6.

2. Background

2.1. The GödelTest Framework
We have previously introduced GödelTest, a flexible framework for generating complex test inputs [1].

The framework consists of three components: custom programs for generating test data; associated choice
models; and mechanism for optimising a choice model so that the generated test data has desirable proper-
ties.

2.1.1. Generating Program
A generating program consists one or more functions. A simple example—a generating program for

ASCII strings—is shown in Figure 1. (The GödelTest framework used for the research described in this
paper uses generating programs written in the Julia language [6]. However, the approach is not dependent
on the features of Julia, and so for clarity, the generating programs are shown here as pseudocode.)

The asciiCharGen function emits an ASCII character. In this function, choose(Int) is a GödelTest con-
struct that returns an integer from the range specified by the second and third parameters. The top-level
stringGen function uses the GödelTest mult construct to call the asciiCharGen function zero or more times.
The stringGen function therefore emits a ASCII string of length zero or more.

The use of programs to generate test input is a more flexible approach than the alternative of a grammar.
Generating programs can have store and act on internal state and so enable the construction of structures
that cannot be represented by a grammar.

Within a generating program there will be a number of choice points that represent a choice of execution
path or data value. In the example above, the GödelTest constructs mult and choose are both choice points:
mult makes a choice of execution path, i.e. how many times to call the asciiCharGen function; choose makes
a choice as to the value that will be stored in the code variable. It is the existence of these non-deterministic
choice points that enables a single generating program to emit a range of di↵erent inputs.

2.1.2. Choice Model
The second component of the GödelTest framework is a choice model. When a choice point is encoun-

tered during the execution of the generating program, the choice model is used to determine which one of the
available choices to make. Conceptually, the choice model provides a number, called a Gödel number, that
identifies the choice to make. The set of Gödel numbers provided during a single execution of generating
program is a Gödel sequence. Since the Gödel sequence determines the execution path and data states of the
generating program, it also determines the test input emitted by the program. This relationship is illustrated

4 S. Poulding and R. Feldt / Procedia Engineering 00 (2015) 1–16

Choice Model

generatessupplies
Gödel sequence

[2, 1, 4, 0] Generating
Program

Data Structure

Fig. 2. The GödelTest framework.

by Figure 2. The problem of finding a test input with the desired properties is therefore abstracted to the
problem of deriving an appropriate Gödel sequence.

The choice model may provide Gödel sequences in a deterministic manner to enable exhaustive testing,
or sample Gödel sequences stochastically to permit probabilistic forms of testing. It is the latter approach
that is considered in this paper and a ‘sampler’ choice model is used for this purpose. In this model, each
choice point is associated with a probability distribution. For example, the mult choice point is associated
with a geometric distribution in the model: this distribution samples a non-negative integer, and small
integers are more likely to be sampled than large integers. The choose(Int) choice point is associated with a
discrete uniform distribution that samples an integer in range specified by arguments to the construct.

2.1.3. Optimisation for Desirable Properties
If a desired property of the test inputs can be quantified as a metric, then GödelTest can use this metric to

optimise the generation process to favour test inputs with the property. Since GödelTest abstracts the choice
model from the generating program, the optimisation is applied to the choice model.

In our previous work, we have described two complementary mechanisms for optimising a sampler
choice model in this way.

The first mechanism applies metaheuristic search to the parameters of the choice model [1]. Most
of the probability distributions in a sampler choice model have one or more parameters that control the
likelihood of sampling particular Gödel numbers. For example, the geometric distribution (associated with
a mult choice point) has single parameter that takes values between 0 and 1; when the parameter is closer
to 0, larger Gödel numbers are more likely. Changing these model parameters thus a↵ects the probability
distribution over the domain of test inputs, and so the model parameters can be optimised to favour inputs
that have the desired property. This optimisation occurs once, prior to generating a set of test inputs.

In contrast, the second form of optimisation occurs during the generation of each test input. It applies
Nested Monte-Carlo Search (NMCS), an algorithm used to solve single-player games, to the selection of
each Gödel number. We provide here an overview of how NMCS is used for this purpose, and refer the
reader to [2] for further details.

NMCS is normally applied to the ‘game tree’—the tree of possible future moves—in a single-player
game such as solitaire. To assesses which is the best move to make next, NMCS considers each of the
these moves in turn, and starting from each move, plays the game to completion in a ‘simulation’. During
the simulation the moves are played according to a simple policy such as choosing moves at random, or
alternatively using NMCS itself (hence the nested nature of the approach). The terminal game state is then
evaluated according to a chosen metric. Whichever of the top-level moves from the current game state led
to the best value of this metric at a terminal game state in simulation is then taken. Figure 3 illustrates this
technique.

While it would appear that the ‘signal’ returned from a single simulation from each of the possible moves
from the current game state would be hard to detect among the ‘noise’ arising from the random nature of
the simulations, NMCS and other types of Monte-Carlo Tree Search are surprisingly e↵ective at winning
games, i.e. optimising the metric that assesses the terminal game state [7].

To apply this search technique to GödelTest, we equate game states to choice points, and moves to the
possible choices, identified by Gödel numbers, at a choice point. When a Gödel number is requested from
the choice model, a small set of Gödel number are sampled from the probability distribution associated
with the choice point. Each of the Gödel numbers are assessed in turn using a ‘simulation’ that first applies
that Gödel number to the choice point, and then runs the generating program to completion with the Gödel
numbers for the remaining choice points encountered in the program sampled at random from the choice

S. Poulding and R. Feldt / Procedia Engineering 00 (2015) 1–16 5

A B C
current game state

terminal state

terminal state

si
m

ul
at

io
n

to
p-

le
ve

l
m

ov
es

terminal
state

Fig. 3. An example of Nested Monte-Carlo Search for a single-player game.

<book inPrint="true">

<title >The C Programming Language </title >

<author >

<firstname >Brian </firstname >

<lastname >Kernighan </lastname >

</author >

<author >

<firstname >Dennis </firstname >

<lastname >Ritchie </lastname >

</author >

</book>

Fig. 4. An example of XML containing information about a book.

model. The Gödel number that results in the ‘best’ candidate input by simulation, as determined by the
property metric, is the one returned by the choice model for the original choice point, and the execution
of the generating program continues on to the next choice point. The process can be nested so that during
the simulation process, NMCS itself is used rather than random sampling; this can lead to more e↵ective
optimisation at the expense of a larger number of simulations and so more computational e↵ort required to
generate a single test input.

In [2], we found that NMCS was an e�cient mechanism for generating tree structures with specific
properties. In particular, it can be faster than simply generating trees at random and rejecting those that did
not have the desired properties. Since XML has a tree-like structure, we apply NMCS as the optimisation
mechanism in this paper. We use GT-NMCS to denote the combination of the GödelTest framework and
NMCS.

2.2. Extensible Markup Language
2.2.1. Structure and Terminology

A simple example of Extensible Markup Language (XML), containing the information about a book,
is shown in Figure 4. A pair of opening and closing tags delimits an element: <title> ... </title> is
an instance of a title element. Elements can contain other elements: for example, the author element
contains firstname and lastname elements. Elements can also contain text between the tags; each con-
tiguous piece of text, i.e. uninterrupted by elements, is a text node. Thus The C Programming Language

is a text node that is a child of the title element. Elements may have attributes associated with them using
a name="value" notation in the opening tag.

2.2.2. XML Schema Definition
XML Schema Definition (XSD) is one of a number of methods of specifying domain-specific XML

formats, and is a recommendation (i.e. standard) of the World Wide Web Consortium (W3C) [8]. XSD is
itself an XML format which specifies the valid elements and attributes that the domain-specific XML can

6 S. Poulding and R. Feldt / Procedia Engineering 00 (2015) 1–16

<xs:element name="book">

<xs:complexType >

<xs:sequence >

<xs:element name="title" type="xs:string"/>

<xs:element ref="author" maxOccurs="unbounded"/>

</xs:sequence >

<xs:attribute name="inPrint" type="xs:boolean"/>

</xs:complexType >

</xs:element >

Fig. 5. A fragment of XSD specifying the book element.

contain, the data types permitted in text nodes and attribute values, and how the elements may be arranged
as a hierarchy.

A fragment of the XSD for the book example discussed above is shown in Figure 5. This fragment
specifies the constraints on the book element: it must contain exactly one title element followed by
one or more (indicated by maxOccurs="unbounded") author elements. The book element can take one
attribute, inPrint, and by default, the use of this attribute is optional. The title element can contain a
single text node that is a string of Unicode characters: this indicated by the ‘built-in’ data type xs:string.
The inPrint attribute has the built-in data type xs:boolean which consists of the values true and false.
The author element is defined by a reference to its type that is defined elsewhere in the XSD (and not
shown in this fragment).

3. Automating the Construction of Generating Programs for XML

GödelTest generating programs for domain-specific XML may need to incorporate a large number of
constraints, and thus the substantial e↵ort may be expended in constructing the program. In this section we
describe a ‘connector’, XSD-to-GT, that can automate much of the construction of the generating program.
The process is illustrated in Figure 6: XSD-to-GT uses the XSD to automatically construct a generating
program that incorporates the domain-specific constraints. The GT-NMCS algorithm is then used to generate
XML test inputs with desirable properties using this generating program.

Choice Model

Generating
Program

XML
XSD <book>

 <title>
 </title>
</book>

XSD-to-GT GT-NMCS

Fig. 6. The generation process using the XSD-to-GT connector.

The process is portrayed as linear in the figure but in practice it is likely to be iterative. Any faults identi-
fied by executing the generated test cases could be the result of errors or omissions in the XSD specification
rather than faults in the software itself. After correcting any faults in the XSD, the XSD-to-GT connector
permits the generating program to reconstructed automatically.

3.1. The XSD-to-GT Connector
The XSD-to-GT connector used for the research described here is implemented as a script of approxi-

mately 1,500 lines of Julia code and uses the Julia LightXML package [9] to parse the XSD. The current

S. Poulding and R. Feldt / Procedia Engineering 00 (2015) 1–16 7

function bookElementGen
elmt new book element
elmt elmt + titleElementGen
elmt elmt + plus(authorElementGen)
if choose(Bool) then

elmt elmt + inPrintAttributeGen
end if

return elmt
end function

function titleElementGen
elmt new title element
elmt elmt + stringGen
return elmt

end function

function inprintAttributeGen
attr new inPrint attribute
attr attr + booleanGen
return attr

end function

Fig. 7. The GödelTest functions automatically constructed by the XSD-to-GT connector for the XML Schema fragment of Figure 5.

implementation of the connector handles the most common XSD constraints, most built-in types, and cus-
tom types defined by enumerations and XSD patterns (regular expressions).

Figure 7 shows the functions that XSD-to-GT would construct for the XSD fragment of Figure 5. (As
above, we omit implementation details and show the generating program as pseudocode for clarity.) Many
XSD constraints map naturally to GödelTest constructs. For instance, maxOccurs="unbounded" in the
XSD fragment specifies that the book element may have one or more child author elements: this is realised
in the generating program through the use of the plus construct which calls the authorElementGen function
one or more times. The inPrint attribute is optional for the book element, and so a choose construct is
used to return a Boolean value that determines whether the inPrintAttributeGen function is called.

Figure 7 does not show the authorElementGen function itself. The XSD specifies the author element
by reference to a type, and thus this function will be created from the type definition elsewhere in the XSD.
Functions that emit XSD built-in types, such as xs:string and xs:boolean, are created as required by
the connector.

The XSD-to-GT connector outputs the generating program as a Julia source code file. This permits the
manual refinement of the program as described below, as well as facilitating storage and version control in
the same manner as other test-related files.

3.2. Manual Refinement
It may be necessary for the test engineer to edit the source of the generating program to refine the

generation logic. We give two examples of situations in which this may be required.
The first is when the XSD specification cannot completely specify the structure of valid data. For

example, if an attribute in the XML should contain the URL of a webpage, the XSD can specify the pattern
that an URL must conform to (as a regular expression), but cannot specify how to generate URLs for existent
webpages. The test engineer may therefore need to amend the generating program to output URLs of some
webpages that are known to exist.

The second example is a semantic relationship between parts of the XML that are generated indepen-
dently. Consider an XML format that is used to exchange an invoice between supplier and customer. Each

8 S. Poulding and R. Feldt / Procedia Engineering 00 (2015) 1–16

<math mathcolor="green">

<mi>m</mi>

<mo>=</mo>

<mfrac >

<mi>E</mi>

<msup><mi>c</mi><mn>2</mn></msup>

</mfrac >

</math>

Fig. 8. Presentation MathML for displaying the equation m = E
c2 in green.

invoice line may be represented by an XML element which has the line total as an attribute. Elsewhere in
the XML an invoice total may be specified that, for a valid invoice, should equal the sum of the invoice line
totals. Such a relationship cannot be enforced through XSD, and is unlikely to occur by chance when the
line and invoice totals are generated independently.

In order to ensure that at least some of the test cases represent valid invoices, the test engineer can
enhance the generating program to enforce the relationship between line and invoice totals. The use of
generating programs—rather than a grammar—in the GödelTest framwork facilitates this: the line totals
may be passed between functions and additional processing to calculate the sum of the line totals can be
added to the code of the relevant function.

4. Empirical Study

In this section we describe an empirical study that assesses:

RQ1 To what extent can the automated process proposed in Section 3 be realised in practice?

RQ2 Can GT-NMCS be used to improve the comprehensibility of the generated XML inputs?

RQ3 How e↵ective are the XML test sets generated by GödelTest in terms of code coverage, even though
coverage is not a property that is explicitly optimised for?

4.1. Software-under-Test and XML Format
For the empirical study, the software-under-test is JEuclid (version 3.1.9) [10], a Java library that ren-

ders mathematical expressions expressed in the Mathematical Markup Language (MathML) 2.0, a domain-
specific XML format [11]. There are two forms of MathML: one focuses on communicating the semantics
of the expression (content MathML) and the other on the display of the expression (presentation MathML).
It is the latter that we consider in this study.

An example of presentation MathML is shown in Figure 8. The elements mi, mo, and mn identify their
child text nodes as variables (indicators), operators, or numbers, respectively, so that they may be rendered
appropriately. A large set of additional elements, such as mfrac (fraction) and msup (superscript), control
other aspects of the layout. Most elements have many optional attributes that customise the presentation
further by, for example, controlling the colour, font, and alignment.

We selected MathML for the empirical study for the following reasons.

• It has many di↵erent element and attributes types, and encapsulates information in number of di↵erent
ways: in the hierarchy and ordering of elements, in the attributes of each element, and in text nodes
associated with the mi, mo, and mn elements. This enables us to argue some generality in results of
this study in terms of type of XML to which the process can be applied, and the scalability of the
process itelf.

S. Poulding and R. Feldt / Procedia Engineering 00 (2015) 1–16 9

• MathML has a significant real-world use: to display mathematical expressions in web pages. It is
a recommendation (standard) of the World Wide Web Consortium (W3C) for this purpose [11], and
modern browsers support MathML, either natively or using JavaScript libraries.

• W3C provide an XSD specification for MathML 2.0 which utilises many features of the XML Schema
language and so this XSD will exercise much of the functionality of the XSD-to-GT connector.

• W3C provide a manually-constructed test set for MathML 2.0 against which the test sets generated
by GödelTest can be compared.

4.2. Comprehensibility Metric
In our previous work that generated random tree structures [1], it was found that in the absence of

any optimisation of the generation process, many of the generated trees were small (i.e. had few nodes),
while others were very large. A similar distribution of tree sizes was also seen when using Boltzmann
samplers [12], a generation technique based on combinatorics and with a strong analytical foundation, and
so we speculate that this distribution of sizes is a consequence of the tree data structure rather than of the
generation technique. XML inputs have a tree-like structure, and if a similar size distribution were to arise in
the XML inputs generated by GödelTest, this would have two consequences for the e�ciency of the testing
process.

Firstly, small and simple XML inputs would be unlikely to exercise much of the code in the software-
under-test, and therefore be unlikely to find many faults. The costs incurred in executing and checking such
a test case may be wasted.

Secondly, large and complex XML inputs may be di�cult for test engineer to comprehend. The e↵ort
involved in predicting the correct output of the software for this input, and checking that the observed output
matches this prediction may be substantial. As an extreme example, it might be possible to achieve high code
coverage of the software using a single test case with a very large XML input. It would be di�cult, however,
for a test engineer to fully comprehend such an input and to correctly predict the output. Moreover, should
this single test case detect a fault in the software, it may be of little assistance to developer in determining
the location of the fault.

We argue that there is an optimal range of complexity for a single XML input: it must be su�ciently
complex to exercise the software so that faults may be found, but not too complex for the test engineer to
comprehend.

In the context of MathML, we propose the following quantities a↵ect comprehensibility of a test input:

• the number of elements, nelmt;

• the number of attributes, nattr; and,

• the number of text nodes1, ntext.

Our argument is that each additional element, attribute and text node adds complexity to the presentation of
the MathML, and thus to the e↵ort required by the test engineer to comprehend it and predict the correct
output. For example, a new mo element adds a further operator to the expression; a new mathcolor attribute
may change the colour of the part of the expression, while a new text node in, for example, an mn element
adds further text to be displayed.

The three values may used to guide GT-NMCS as the following single fitness function:

f =

s
log

nelmt

telmt

!2

+

log

nattr

tattr

!2

+

log

ntext

ttext

!2

(1)

1The Julia LightXML package used in this paper to output the XML test inputs adds whitespace between elements to make it more
human readable. In the empirical study of Section 4 we therefore count only text nodes that do not consist only of whitespace.

10 S. Poulding and R. Feldt / Procedia Engineering 00 (2015) 1–16

where t denotes the target value of corresponding metric. The target values are likely be domain-specific,
and so can be set by test engineer depending on the nature of the XML format.

An optimal XML input for which the observed metrics equal the target values will have a fitness of zero
and the fitness takes increasingly larger positive values the further away the observed metrics are from the
targets. By taking the ratio of the observed and target values, the contribution of each observed metric to the
overall fitness is normalised. By taking the logarithm of the ratio and then squaring it, the same fitness is
calculated when the observed metrics is, for example, half the target value as when the it is twice the target
value. The use of the logarithm also has the useful property of severely penalising MathML inputs having,
for example, no text nodes, by returning an infinite fitness: such an input would typically cause no math
expression to be rendered by the software, and thus is unlikely to be an e↵ective test case.

The argument that we make for the appropriateness of this comprehensibility metric in the context of
MathML—that each additional element, attribute, and text node typically increases the complexity of the
rendered expression and therefore also increases the e↵ort the human engineer must expend in checking its
correctness—is likely to apply to XML used in other domains. We therefore speculate that the metric may
have application beyond this particular case study.

4.3. Preparation
Prior to experimentation, the W3C XSD for presentation MathML was modified as follows.

• The W3C test sets include most, but not all, of the elements and attributes of presentation MathML.
To enable a fair comparison between the test sets generated by GödelTest and the W3C test sets, any
element or attribute not present in at least one of the W3C test cases was removed from the XSD. This
is a conservative decision that is likely to favour the W3C test set in any comparison.

• A few attributes in the XSD do not have a fully-specified type. For example the attribute mathcolor
should specify a valid colour name, or an RGB hex value, but the XSD permits any string. (A comment
in the XSD notes this problem.) The types of these attributes were updated so that meaningful values
could be generated.

• A bug was identified in the XSD type patterns (regular expressions) for attributes that specify a length
and associated unit. The definition was amended to fix this bug.

• A bug was identified that incorrectly specified an attribute group of mi.attlist for the mn element:
this was corrected to use the mn.attlist group.

• JEuclid was found to raise a Java exception when the a mathalign element was used in some parts of
the element hierarchy. To prevent this apparent bug in JEuclid from a↵ecting coverage measurements,
the part of XML Schema definition giving rise to this problem was removed.

These changes were made only to ensure a fair comparison agains the manually-constructed W3C test set;
most of them would not normally be made in practice.

4.4. Process Automation (RQ1): Method and Results
The XSD-to-GT connector was successful in constructing a GödelTest generating program from the

MathML XSD. As an indication of the complexity of the XSD specification for MathML, the generating
program consisted of approximately 3,000 lines of Julia code and 569 functions. This would have been very
time-consuming and error-prone for a test engineer to construct manually.

The connector took approximately 5 seconds to construct this generating program on a computer with a
1.3 GHz processor and 8 GB of memory.

No manual refinement (Section 3.2) of the generating program was necessary in this case.

S. Poulding and R. Feldt / Procedia Engineering 00 (2015) 1–16 11

4.5. Comprehensibility (RQ2): Method and Results
First, 30 test sets, each consisting of 208 MathML test cases, were generated using the GT-NMCS

algorithm and the comprehensibility fitness metric of equation (1). The test set size of 208 is the same as
that of the W3C test set for presentation MathML, and was chosen to enable these test sets to be re-used in
the experiment below that assesses RQ3.

For this study, the target values for the number of elements, attributes and text nodes in the metric were
set objectively by measuring the mean values of these properties in test cases of the W3C test set. This gave
target values of telmt = 22.72, tattr = 5.80, and ttext = 13.43. In practice, the target values would be set by the
test engineer depending on the degree of comprehensibility required.

The GT-NMCS algorithm takes two parameters. The nesting level was set to 1, and the number of Gödel
numbers assessed at each choice point during simulation was set to 4. These parameter settings had been
found, in previous work, to demonstate an acceptable trade-o↵ between the performance of the algorithm
and the optimality of the test inputs in terms of the desirable properties [2]. With these parameters, a test set
of size 208 could be generated using GT-NMCS in approximately 240 seconds.

Next, 30 test sets, again each of 208 test cases, were generated by simple random sampling from the
GödelTest choice model (we denote this process GT-Random). These test cases give an indication of the
test inputs that would occur were the generation process not optimised for comprehensibility.

For all test cases from both GT-NMCS and GT-Random, the number of elements, attributes, and text
nodes was counted. These results are shown as violin plots in Figure 9. The width of the plot indicates the
frequency at di↵erent counts. The red points indicates the corresponding target values (derived from the
W3C test set).

To enable an easier visual comparison, the y-axes of the two violin plots range from 0 to 50, but the upper
limit truncates the plots of element and attribute counts, particularly of GT-Random. For GT-Random, the
largest element count was 86, and 8 of the 6240 (30 sets of 208 cases) randomly sampled inputs had more
than 50 elements; the largest attribute count was 292, and 205 of the inputs had more than 50 attributes. For
GT-NMCS, the largest attribute count was 62, and 3 of the inputs had more than 50 attributes.

●

●

●

0

10

20

30

40

50

elements attributes textnodes
variable

va
lu
e

(a) GT-Random

●

●

●

0

10

20

30

40

50

elements attributes textnodes
variable

va
lu
e

(b) GT-NMCS

Fig. 9. The distribution of element, attribute, and text node count in test cases generated by (a) GT-Random and (b) GT-NMCS.

12 S. Poulding and R. Feldt / Procedia Engineering 00 (2015) 1–16

4.6. Code Coverage (RQ3): Method and Results
JEuclid can output rendered MathML in a variety of image formats, but for simplicity, the test sets are

assessed using the coverage of the core code (i.e. that contained in jeuclid-core-3.1.9.jar) when ren-
dering MathML to a single image format: SVG. The Java Code Coverage (JaCoCo) library of the EclEmma
coverage tool [13] is used to measure coverage in terms of the proportion of the bytecode instructions exer-
cised by the test set.

The manually-derived W3C test set covered 61.6% of the core code.
The coverage was measured of each of the 30 test sets generated using GT-NMCS for RQ2 in the

preceding experiment. The coverage induced by these test sets varied between 58.0% and 60.2%, with
a median of 59.3%. The di↵erence from the coverage of W3C is statistically significant: a one-sample
Wilcoxon test calculates a p-value of less than 10�5.

4.7. Discussion
4.7.1. RQ1: Process Automation

For presentation MathML, the automated process proposed in Section 3 was realised in practice. The
XSD-to-GT connector was able to automatically construct a generating program and associated choice
model; and from these, GT-NMCS could automatically generate XML test inputs.

The time taken to construct a GödelTest generating program from the XSD was approximately 5 seconds,
and the time taken to generate one test set of 208 inputs from the generating program was approximately
240 seconds. Thus, in an ideal process, an optimised test set could be produced from the XSD in under 5
minutes. (This assumes, of course, that the XML Schema definition already exists, as was the case here.) In
practice, the process was iterative and took longer since both the automatic construction of the generating
program and the generation of test inputs revealed errors in the XSD specification.

4.7.2. RQ2: Human-Comprehensible XML Inputs
The results illustrated in Figure 9a for GT-Random show that, in the absence of a metric guiding the

generation process, many small test inputs are generated. Many of the test inputs have one element, no
attributes or no text nodes and will therefore exercise little of the code. Conversely some test inputs have 50
or more attributes—compared to an average of 5.8 in the manually-derived W3C test set–and such MathML
will be di�cult for a human to comprehend and predict the correct rendered output.

The results illustrated in Figure 9b show that GT-NMCS, using the fitness metric of equation (1), can
generate MathML with properties closer to the target values. Fewer of the inputs have only one element,
no attributes or no text nodes. In particular, many more of the inputs have at least one text node compared
to GT-Random. No inputs have more than 38 elements, nor more than 62 attributes; indeed many of the
inputs have a number of attributes close to the target value indicted by the red point, and are therefore more
comprehensible.

Nevertheless, most element counts are below the target value and many of the attribute counts are above
it. The GT-NMCS algorithm appears to have di�culty in increasing the element count while simultaneously
reducing the attribute count. In MathML, most elements have many optional attributes, and the default
choice model includes each of these attributes in the XML with a probability of 0.5. We speculate that
this leads to a highly variable number of attributes in candidate inputs produced during each simulation
performed by the NMCS algorithm, and this variability prevents the algorithm making the correct choice as
to whether or not to include each individual attribute. This causes too many attributes to be included in the
test input, or—to compensate—the algorithm includes fewer elements and thus avoids the potential to add
more attributes.

In MathML, text nodes are only output for the mi, mo, mn. These nodes are relatively deep in the
hierarchy of XML elements, and we speculate this is the reason why the inputs generated GT-NMCS all
have a text node count below the target.

The results demonstrate that proposed metric is useful in permitting GT-NMCS to produce XML inputs
that have a comprehensibility closer to the target values, but the optimisation technique is not as e↵ective as
we would like.

S. Poulding and R. Feldt / Procedia Engineering 00 (2015) 1–16 13

Table 1. Possible bugs found in the JEuclid software and/or the MathML XSD specification.
Location E↵ect Apparent Cause
JEuclid (or XSD) IllegalArgumentException fontfamily attribute specifies an invalid font
JEuclid (or XSD) IndexOutOfBoundsException a particular use of the malignmark element
JEuclid (or XSD) Unsupported notation message some values of the notation attribute
JEuclid (or XSD) Invalid value warning some values of the rowalign attribute
JEuclid (or XSD) Number parsing warning length attributes with values that start with a decimal point
JEuclid (or XSD) Number parsing warning maxsize has a negative value
XSD Invalid length attributes incorrect patterns for length-with-[optional-]unit types
JEuclid (when outputting PNG) OutOfMemoryError mathsize attribute specifies a large size
JEuclid (when outputting PNG) OutOfMemoryError scriptlevel attribute is negative

4.7.3. RQ3: Code Coverage
The test sets generated using GT-NMCS cover the core code of JEuclid to almost the same extent as the

manually-derived W3C test set. This is perhaps an unexpected result given that coverage was not a property
that was optimised for during the test data generation process. Moreover, if there is a trade-o↵ between
comprehensibility and coverage—for example, because larger, and so less comprehensible inputs, generally
exercise more of the code—optimising for comprehensibility could have led to a reduction in coverage.

We interpret this result positively as showing that generating comprehensible XML using GT-NMCS
can be competitive with manually-derived deterministic tests in terms of coverage, but we obviously require
further experimentation on additional SUTs in order to draw a general conclusion. We speculate, for exam-
ple, that the JEuclid core code may be amenable to testing by randomly-generated data of the type emitted
by GT-NMCS since the range of di↵erent XML elements and attributes in the test set is likely to be a more
important factor in determining code coverage than the specific values of attributes and text nodes (expect
for the operators discussed below).

A possible explanation for the slightly lower coverage achieved by GT-NMCS is that JEuclid, like most
renderers of MathML, may have special handling that formats some common operators, such as

P
and

R
,

in custom manner when these symbols appear in an mo element. However the XSD specifies the text node
in the mo element as having a string type, and so these special symbols are unlikely to occur by chance in
the XML generated by GödelTest. In practice, the test engineer could incorporate this knowledge about the
program by amending the XSD or manually refining the GödelTest generating program.

4.8. Bugs Found
Finding faults was not an explicit objective of this empirical study. However, a number of possible bugs

were identified when preparing and running the study. In many cases it is unclear whether the fault lies in
the JEuclid software or the XSD specification. The bugs are listed in Table 1.

5. Related Work

5.1. Generating Structured Test Inputs
Automated techniques for generating structured test inputs typically use either non-deterministic gener-

ating programs or grammars. The algorithms of Beyene and Andrews [14], and of Poulding et al. [15] are
examples of the grammar-based approach that are particularly notable: both use metaheuristic optimisation
to generate random test cases with desirable properties.

However grammar-based approaches are less flexible than non-deterministic generating programs of the
type used by GödelTest. UDITA [16] is a Java-based framework that generates test sets by exhaustively
enumerating all points of non-determinism in the generating program up to a chosen bound. QuickCheck
[17] is a framework for testing programs in Haskell and other languages by generating data at random.
A key di↵erence between QuickCheck and GödelTest is that manual optimisation must be performed for
QuickCheck in order to generate test inputs with desirable properties, while GödelTest can perform this
optimization automatically.

14 S. Poulding and R. Feldt / Procedia Engineering 00 (2015) 1–16

5.2. Generating XML
Bertolino et al. proposed an XML-based partition testing (XPT) method that derives XML instances

from schemas [18] and in later papers used XPT to test web services [19] and access control policies [20].
Since the method systematically exhausts the alternatives described by the schema it su↵ers from an ex-
plosion in the number of instances generated. The authors extended their tool with element weighting and
strategies to select only a subset of the schema in a specific derivation. However, it is unclear how these
weights were set, how the strategies were selected, and to what extent these method parameters are specific
to a given schema or a given set of test objectives. In contrast, GödelTest can automatically tune the gener-
ation process to approach test targets such as comprehensibility or coverage, and the XSD-to-GT connector
can use any XML Schema definition as input.

Rather than starting from a formal description of valid XML messages such as XML Schema definitons,
O↵ut and Xu [21] recorded actual messages and then perturbed the data in them based on message grammar
rules to ensure syntactic validity. They then used the set of generated XML messages as a test suite for web
services. Recently, de Melo and Silveira [22] improved this approach by adding mutation operators and
boundary values extracted from XML Schema facets. They also review similar approaches that manually
craft specific data and structure mutation operators that are be applied to XML messages. Harikov et al. [23]
describe XMLMate, a search-based tool for generating XML inputs. XMLMate uses XML schemas to
ensure validity, can utilise existing test data to improve the realism of the generated inputs, and applies
evolutionary search—using XML-specific mutation and crossover operators—to optimise coverage of the
code.

In contrast to this body of work, GödelTest is a general test generation tool which needs no data-specific
operators nor rules in order to construct a large number of syntactically valid test data instances. However,
we note that a benefit of mutating recorded or supplied input examples is that the generated test data can be
expected to be more realistic since it stays closer to actual, human-created examples. This will likely also
increase comprehensibility of the generated data even though it has not been explicitly evaluated.

5.3. Generating Realistic Test Data
Related to the notion of comprehensibility is whether generated test data can be considered realistic

or not. McMinn et al. [24] argue that automated test data generation techniques, in which the objective
is typically to only optimise coverage, produce test data that is not realistic in the sense that it would be
unlikely to be encountered in real-world use of the software. They argue that such inputs add a qualitative
‘human oracle cost’—in contrast to quantitive costs such as the number of test cases—since the test cases are
more di�cult to understand, and propose that applying even limited knowledge as to the SUT’s operational
profile to the generation process will reduce this cost. An example of such an approach is that of Afshan et
al. in which a model of natural language is incorporated into a technique for generating string inputs [25].

Bozkurt and Harman make a similar argument: that syntactically valid test data is not enough; for test
data to be realistic it also must be semantically valid [26]. As an example they note that a realistic ISBN
number should not only be of the correct format, it should also correspond to a real-world book. They then
describe an automated system that can search for web services and use them to learn sets of realistic test
data that can later be used for testing web services.

McMinn et al. [27] utilise the internet to locate realistic test data for string types. Web pages are retrieved
from search engines using queries constructed from identifiers in the SUT’s source code such as parameter,
method, or class names. Strings in these web pages are then used to extend the search-based generation of
test data for the SUT.

Both these techniques focus on generating realistic inputs for string-like data types such as URLs, ISBNs
and ZIP codes that may be sensibly bounded in size. In contrast, the XML data types considered in this
paper are more complex tree-like data types which are unbounded in size. For this reason, the approach
we describe in this paper considers comprehensibility in terms of the size of XML input, rather that how
semantically realistic the input is. As discussed above, optimising this latter aspect would be a useful
extension to our approach.

S. Poulding and R. Feldt / Procedia Engineering 00 (2015) 1–16 15

6. Conclusion

We have described an automated process for generating XML test inputs starting from an XML Schema
definition. An empirical study using MathML showed that, in a matter of minutes, test sets could be gener-
ated that demonstrate code coverage approaching that of a manually-derived test set.

We also argued that XML test inputs must be su�ciently complex to exercise the software-under-test
e�ciently, but must also be comprehensible for a human, especially when no automated oracle exists for
the tests. We proposed a metric for evaluating the comprehensiblity of XML and showed that the GT-
NMCS algorithm could use this metric to sample XML test inputs that are more comprehensible than inputs
generated by random sampling.

As future work, we intend to apply a similar ‘connector’ approach in order to automatically construct
GödelTest generating programs from the specifications of other data structures, such as JSON and MDE
models. There is also scope to investigate other methods of optimising the GödelTest generation process:
GT-NMCS, while generating more comprehensible test data than random sampling, nevertheless generated
test inputs for which the metric was relatively distant from the target. One possible solution is to use
metaheuristic optimisation of the choice model prior to sampling GT-NMCS. A future enhancement is to
extend to the technique to improve the comprehensibility of not only the structure of generated XML inputs
in terms of size, but also the realism of the data itself. Finally, we would like to validate empirically whether
our proposed comprehensibility metric reduces the cost of a human oracle in practice.

Acknowledgments

This work was funded by The Knowledge Foundation (KKS) through the project 20130085, Testing of
Critical System Characteristics (TOCSYC).

References

[1] R. Feldt, S. Poulding, Finding test data with specific properties via metaheuristic search, in: Proc. of 24th IEEE International
Symposium on Software Reliability Engineering (ISSRE 2013), IEEE, 2013, pp. 350–359.

[2] S. Poulding, R. Feldt, Generating structured test data with specific properties using Nested Monte-Carlo Search, in: Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO 2014), 2014, pp. 1279–1286.

[3] R. Debreceny, G. L. Gray, The production and use of semantically rich accounting reports on the internet: XML and XBRL,
International Journal of Accounting Information Systems 2 (1) (2001) 47–74.

[4] M. Masmano, I. Ripoll, A. Crespo, J.-J. Metge, Xtratum: a hypervisor for safety critical embedded systems, in: 11th Real-Time
Linux Workshop, 2009.

[5] G. Fraser, A. Arcuri, Handling test length bloat, Software Testing, Verification and Reliability 23 (7) (2013) 553–582.
[6] J. Bezanson, S. Karpinski, V. B. Shah, A. Edelman, Julia: A fast dynamic language for technical computing, arXiv preprint

arXiv:1209.5145.
[7] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowling, P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, S. Colton,

A survey of Monte Carlo tree search methods, IEEE Trans. Computational Intelligence and AI in Games 4 (1) (2012) 1–43.
doi:10.1109/TCIAIG.2012.2186810.

[8] D. Fallside, P. Walmsley, XML Schema Part 0: Primer Second Edition, Tech. rep., W3C (2004).
[9] D. Lin, LightXML, https://github.com/lindahua/LightXML.jl (2014).

[10] M. Berger, JEuclid: Java-based mathml rendering, http://jeuclid.sourceforge.net/, version 3.1.9 (February 2010).
[11] R. Ausbrooks, S. Buswell, D. Carlisle, S. Dalmas, S. Devitt, A. Diaz, M. Froumentin, R. Hunter, P. Ion, M. Kohlhase, R. Miner,

N. Poppelier, B. Smith, N. Soi↵er, R. Sutor, S. Watt, Mathematical Markup Language (MathML) Version 2.0 (Second Edition),
Tech. rep., W3C (2003).

[12] P. Duchon, P. Flajolet, G. Louchard, G. Schae↵er, Boltzmann samplers for the random generation of combinatorial structures,
Combinatorics, Probability and Computing 13 (4-5) (2004) 577–625.

[13] M. R. Ho↵mann, EclEmma: Java code coverage tool for eclipse, http://www.eclemma.org/, version 2.3.1 (May 2014).
[14] M. Beyene, J. Andrews, Generating string test data for code coverage, in: Proceedings of the IEEE International Conference on

Software Testing, Verification and Validation (ICST 2012), 2012, pp. 270–279.
[15] S. Poulding, R. Alexander, J. A. Clark, M. J. Hadley, The optimisation of stochastic grammars to enable cost-e↵ective proba-

bilistic structural testing, in: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2013), 2013, pp.
1477–1484.

[16] M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid, V. Kuncak, D. Marinov, Test generation through programming in UDITA, in:
Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering-Volume 1, ACM, 2010, pp. 225–234.

16 S. Poulding and R. Feldt / Procedia Engineering 00 (2015) 1–16

[17] K. Claessen, J. Hughes, Quickcheck: A lightweight tool for random testing of haskell programs, in: Proceedings of the 5th ACM
SIGPLAN International Conference on Functional Programming (ICFP 2000), 2000, pp. 268–279.

[18] A. Bertolino, J. Gao, E. Marchetti, A. Polini, Automatic test data generation for XML schema-based partition testing, in: Pro-
ceedings of the second international workshop on automation of software test, IEEE Computer Society, 2007, p. 4.

[19] C. Bartolini, A. Bertolino, E. Marchetti, A. Polini, WS-TAXI: A WSDL-based testing tool for web services, in: Software Testing
Verification and Validation, 2009. ICST’09. International Conference on, IEEE, 2009, pp. 326–335.

[20] A. Bertolino, F. Lonetti, E. Marchetti, Systematic XACML request generation for testing purposes, in: Software Engineering and
Advanced Applications (SEAA), 2010 36th EUROMICRO Conference on, IEEE, 2010, pp. 3–11.

[21] J. O↵utt, W. Xu, Generating test cases for web services using data perturbation, ACM SIGSOFT Software Engineering Notes
29 (5) (2004) 1–10.

[22] A. C. de Melo, P. Silveira, Improving data perturbation testing techniques for web services, Information Sciences 181 (3) (2011)
600–619.

[23] N. Havrikov, M. Höschele, J. P. Galeotti, A. Zeller, XMLMate: evolutionary XML test generation, in: Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering, ACM, 2014, pp. 719–722.

[24] P. McMinn, M. Stevenson, M. Harman, Reducing qualitative human oracle costs associated with automatically generated test
data, in: Proceedings of the First International Workshop on Software Test Output Validation, ACM, 2010, pp. 1–4.

[25] S. Afshan, P. McMinn, M. Stevenson, Evolving readable string test inputs using a natural language model to reduce human oracle
cost, in: Software Testing, Verification and Validation (ICST), 2013 IEEE Sixth International Conference on, IEEE, 2013, pp.
352–361.

[26] M. Bozkurt, M. Harman, Automatically generating realistic test input from web services, in: Service Oriented System Engineer-
ing (SOSE), 2011 IEEE 6th International Symposium on, IEEE, 2011, pp. 13–24.

[27] P. McMinn, M. Shahbaz, M. Stevenson, Search-based test input generation for string data types using the results of web queries,
in: Software Testing, Verification and Validation (ICST), 2012 IEEE Fifth International Conference on, IEEE, 2012, pp. 141–150.

