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ABSTRACT

Manually creating test cases is time consuming and error
prone. Search-based software testing can help automate this
process and thus reduce time and effort and increase quality
by automatically generating relevant test cases. Previous re-
search has mainly focused on static programming languages
and simple test data inputs such as numbers. This is not
practical for dynamic programming languages that are in-
creasingly used by software developers. Here we present an
approach for search-based software testing for dynamically
typed programming languages that can generate test sce-
narios and both simple and more complex test data. The
approach is implemented as a tool, RuTeG, in and for the
dynamic programming language Ruby. It combines an evo-
lutionary search for test cases that give structural code cov-
erage with a learning component to restrict the space of pos-
sible types of inputs. The latter is called for in dynamic lan-
guages since we cannot always know statically which types
of objects are valid inputs. Experiments on 14 cases taken
from real-world Ruby projects show that RuTeG achieves
full or higher statement coverage on more cases and does so
faster than randomly generated test cases.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and debugging—
Testing tools (e.g. data generators, coverage testing)

General Terms: Experimentation.

1. INTRODUCTION

While complexity software systems have increased in re-
cent years the markets have also matured and users require
higher quality which puts additional stress on activities, such
as testing, to increase quality [3]. Search-based software
testing (SBST) can reduce time and effort by automati-
cally generating relevant test cases. It has been success-
fully applied, especially in structural testing [7, 11]. How-
ever, a majority of studies are limited to simple input data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO’11, July 1216, 2011, Dublin, Ireland.

Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

types, such as numerical values. Numbers are very com-
mon as input data in real-world software but there are many
other input data types that are frequently used, especially
in object-oriented programs. Often parameters are objects
themselves that maintain an internal state, or are complex
and compound data structures that require appropriate ini-
tialization. In such situations, the generation of test data to
pursue a specific goal, becomes more complex than it is for
simple numerical values.

Another aspect is the generation of test cases for dynamic
languages such as Ruby, Python and Javascript, which have
grown in popularity in recent years. Dynamic languages
share a number of runtime characteristics that are not, or
only partially, available in static languages: dynamic typ-
ing, interpretation, and runtime modification [12]. Often
they are not strict on the type of objects that are sent as
arguments or produced in method invocations.

In this paper we introduce RuTeG (the Ruby Test case
Generator), a tool written in Ruby that can create test cases
for Ruby source code. The goal is the automatic generation
of test cases to achieve full statement coverage. In this pa-
per we focus on two aspects: (i) How can search-based tech-
niques be applied on a dynamic programming language? and
(ii) How can different test input data, such as objects and
complex data structures, be generated? We focus on the
dynamic typing aspect of dynamic programming languages,
which makes it harder to constrain the search space since
there are many more possible test data and parameters that
could be valid.

2. BACKGROUND

There is no single definition of what constitutes a dynamic
language, rather the term is used quite liberally within com-
puter science. The common theme is that these languages
allow and execute behaviors at runtime that other languages
either do not allow at all or do only statically, at compile
time [12]. Even if these behaviors can be emulated in nearly
any language of enough complexity, dynamic languages in-
herently supports them and makes them easy to use.

Three main characteristics are commonly attributed to
dynamic languages: dynamic typing, runtime modification
and interpretation [12]. The latter refers to the fact that
dynamic languages are often interpreted instead of being
compiled. However, this has more to do with implementa-
tion techniques suited to support the dynamic aspects rather
than to being an inherent property of the languages them-
selves. In practice, the effect for the programmer and user is
that she does not have to think about whether or when the



source code is actually compiled since it happens seamlessly
and automatically [12].

Runtime modification is a central characteristic of dy-
namic languages. It often involves some type of reflection
where objects can be queried on their type and for the code
implementing a method, etc. Types, values and code can
also be dynamically changed or added at runtime. The ac-
tual behaviors that are allowed vary from language to lan-
guage. Also, the use of these features are not common in
actual dynamic programming languages and often only a
small percentage of code make use of such dynamic features,
while the rest is designed in a more traditional manner. For
these reasons we exclude the testing of code that makes use
of runtime modification. However, dynamic typing is a cen-
tral aspect of most programming languages considered to be
dynamic, and this is our main focus for this study.

One of the dynamic languages that are growing in use
and popularity is Ruby. Ruby is a fully object-oriented lan-
guage, which means that everything is an object, including
primitive types such as bytes, integers, booleans and chars.
Ruby is dynamically typed, also expressed as Ruby having
‘duck typing’. Objects are described by what they can or
can not do, i.e. by the methods it responds to at runtime,
instead of being associated to a specific type. When Ruby
code is executed, the execution environment need not care
what type an object has, only if it implements the meth-
ods that are called on it. Even if our focus is on testing
code, with this dynamic typing, it is helpful for our imple-
mentation that Ruby has extensive support for reflection.
Much information about objects can be gained by querying
objects at runtime. These features make Ruby an attrac-
tive programming language, however it may also complicate
the search for adequate test cases, because of its dynamic
nature [19].

3. RELATED WORK

Search-based techniques have been extensively applied to
generate test data and scaled up to industrial use [11, 16].
Harman and McMinn [6] conducted a theoretical and em-
pirical study, comparing random testing, hill climbing, and
genetic algorithms on a number of test projects. The out-
come of the study showed that evolutionary algorithms are
suitable in many situations when it comes to the generation
of input test data for structural testing, whereas in some
cases simpler search techniques perform surprisingly well,
and are able to surpass evolutionary algorithms. They also
proposed a memetic algorithm that combines different local
and global searchers for improved performance.

The efficiency of the search depends not only on the used
algorithm. Also the quality of the fitness function con-
tributes to the success rate. It expresses the ‘goodness’ of
test cases in a numerical value, and is used to guide the
search. Watkins and Hufnagel [21] compared in their work
different fitness functions that were used in previous studies.
They divide the fitness functions in two major categories:
Approximation level (or control-oriented approaches) and
distance level (or branch-oriented approaches). The first,
approximation level, is an indicator about how close the ac-
tual path taken, deviates from the target sub-goal. The
second, distance level, examines the branch node and gives
information about how close the test case was, in order to
fulfill the branch condition. Some fitness functions are a
combination of approximation and distance level. Examples

for that are the fitness functions proposed by e.g. Wegener
et al. [22].

3.1 Generating Complex Input Data

Zhao and Li [23] have developed an automatic test data
generator in C/C++ for dynamic data structures. They di-
vide pointer operations into four possible categories: Assign-
ment, creation, deletion and comparison statements. The
comparison between pointer values is further categorised
into equal and unequal conditions. An accompanying ta-
ble is maintained to keep track of the current values and
constraints of pointers. Thus, along the search path, point-
ers are modified to satisfy predicate conditions, as long as
they do not violate any constraints kept within the accom-
panying table. This approach was tested on a small number
of test programs, which showed its applicability. However,
this approach is limited to simple dynamic data structures,
such as binary trees. In [2], Arcuri and Yao examined the
possibility to generate even more complex data types—again
not for a dynamic language—using search-based approaches.
The experiment they conducted gave inconclusive results,
even though the contribution, in their case, was mainly on
examining different search algorithms’ possibility to solve a
testing problem.

Alshraideh and Bottaci [1], on the other hand, focused on
the test data generation to cover branches with string pred-
icates. They address in their study string equality, string
ordering and regular expression matching. They applied a
fitness function that depends on the string predicate. Thus,
for string equality they use the binary Hamming distance,
character distance, edit distance, and string ordinal dis-
tance, while for string ordering, the ordinal value method
and single character pair ordering is applied. The search
for adequate test data is done using a GA. To improve
the efficiency of the search, the input domain is restricted
to characters within an ordinal range from 0 to 127. Fur-
ther the solution candidates are biased towards string literals
that appear within the program under test. The experiment
done in their study shows that the most effective result for
string equality was obtained using the edit distance fitness
function, while no significant difference was found in the fit-
ness function for string ordering.

Marinov [10] developed Korat for creating test data that
are structurally complex. Korat is implemented and gener-
ates test data for the statically typed Java language. Korat
solves imperative predicates, added by the developer, by cre-
ating increasingly more linked, and thus complex, test data
objects. The solver systematically searches for structures
that are inputs to the predicates. The search is bounded by
a limit on the size of the generated data.

Lakhotia et al. [8] combined a hill climb search with sym-
bolic execution and a constraint solver to handle dynamic
data structures involving pointers. Results were promising
compared to a concolic unit testing engine.

3.2 Test Case Generation for Object-Oriented
Programs

Tonella [15] presented one of the first approaches that ap-
plied search-based software testing to object-oriented pro-
grams for structural testing. GA was used in the study
to generate an adequate sequence of object creation and
method invocation, in order to maximize a given coverage
criterion. The main focus was on the generation of a method



call sequence, while input parameters were randomly gener-
ated.

Wappler and Wegener [18] introduced a new type of fitness
function, when it comes to object-oriented programs, namely
the method call distance. It penalizes test cases which termi-
nates prematurely in a sequence of method calls, because of
a possible runtime exception. Such a test case cannot reach
the method under test and so is not a potential solution.

In another contribution, Wappler and Wegener [19] used
strongly typed genetic programming to guarantee the fea-
sibility of generated test cases. Feasibility in this context
refers to the method call sequence, which guarantees that a
method is only invoked after the creation of its object. Us-
ing GA and the method call dependency graph, a set of test
cases was generated to achieve full branch coverage. The
fitness function consisted of a composition of distance level,
approximation level and method call distance. Later Wap-
pler and Schieferdecker [17] described a method to generate
test cases for maximizing branch coverage for non-public
methods. Their idea was to start with a static code analysis
to identify call points, which are method invocations to non-
public methods. This information is then used to generate
test cases that are rewarded by the fitness function if they
are able to reach a call point, and penalized in case that
they miss its target.

Using genetic algorithms for state-based testing is also
relevant for testing object-oriented programs [9]. However,
additional static or dynamic analysis would be needed to
extract the states and transitions that the search could then
be used to target; it is not clear that this can be done directly
from an object-oriented program per se.

Worth taking into account in this context is also Pacheco’s
et al. feedback-directed random testing [14] and the usage
of dynamic detection of likely invariants [4], which has been
shown to efficiently generate effective test cases for object-
oriented programs [13]. The difference to our approach is
mostly the goal—where we focus on dynamic programming
languages and they on Java and C#. With respect to dy-
namic languages, in this case PHP, Wasserman et al. [20]
also analyzed runtime values, confirming that the approach
is useful and can compete with static analysis. In this paper
we also focus on a dynamic programming language (Ruby);
however, we implement a search-based approach to generate
complez input data types.

4. THE RUBY TEST CASE GENERATOR

In this section we introduce the tool RuTeG and its four
main components.

4.1 Analyser

The analyser extracts information that is used later in the
process to generate and adapt test cases. Since Ruby is a
reflective and dynamic language, the analyser mainly per-
forms its task at runtime, and does only a basic static code
analysis. This means that the class under test (CUT) is
loaded dynamically into the system and investigated. The
analyser delivers a CUTInfo object, that contains informa-
tion about the constructor and its arguments. Further it
maintains a list of methods defined on the CUT. Every such
method under test (MUT) is associated with a MUTInfo ob-
ject. This in turn contains information about the MUT,
such as its argument list, and the methods invoked for each
of its arguments. Furthermore it keeps track of the cover-

Constructor:

Method call sequence:
Methodi | TypePattern1 | ArgListt

Method2 | TypePattern2 | ArgList2

Method under test:

TypePattern | ArgList

Figure 1: Representation of an individual.

age achieved during the search process in addition to the
adequate or disqualified data generators.

4.2 Data Generator

Data generators produce input values that are passed as
arguments to method invocations. Finding appropriate data
is a very important although difficult task. There is a large
set of possible input types and also the domain of input
values for a specific type can be quite large. Since it is
difficult for a single data generator, to cover all the different
possibilities, a major design decision was to have different
generators for specific problems. This gives the user the
flexibility to define new generators that can produce context
relevant data. Hence, the set of data generators must be
modifiable, by adding or removing user defined generators.
This however requires a common shared interface, such that
the application can independently run, without changing its
behaviour for each generator.

4.3 Test Case Executor

Generated test cases are executed, to obtain information,
such as code coverage. The test case executor keeps track of
the coverage achieved by previous test scenarios. Therefore
it is possible to determine, whether the current test case
contributes to the code coverage and, thus, if it will be part
of the final set of test scenarios.

Test cases are divided into three major parts: the con-
structor; the sequence of method calls to modify the state of
an object; and the invocation of the current method under
test. In case the execution of a test scenario leads to an
exception, it is possible to determine the responsible part.
This is done to prevent a false evaluation in the search pro-
cess.

4.4 Test Case Generator

The test case generator is the core of RuTeG and is re-
sponsible for producing test scenarios. There are two major
tasks: 7) to find appropriate input values, i) to form a rea-
sonable sequence of method invocations.

Both tasks can not be done right away and we employ a
GA to search for a combination of valid input values and
method invocations. The algorithm starts with a random
initialisation of the population, which is then evolved to find
fitter individuals. Each individual in the population is an
encoded representation of a test case (see Figure 1 for an
example). An individual itself can not be executed, but
contains all necessary information to produce a complete
test case: the constructor to create an object from the class
under test, the method call sequence to modify the state of
an object, and the invocation of the method under test.



The constructor consists of an argument type pattern, the
argument list, and the data generators that were used for
the creation of input values. The method call sequence is
similar to the constructor section, with the exception that
each method call contains additional information about the
name of the method to be called. The invocation of the
method under test contains information about the argument
type pattern, the argument list, and which data generator
was applied for the creation of the input value. Information
about the argument type patterns and the applied data gen-
erators are not relevant for the creation of the phenotype,
but it is used for statistical purposes and for simplifying the
combination and mutation phases of the GA.

The search algorithm starts with a randomly initialised
population of individuals. Each individual is transformed
into an executable test case and evaluated. The evaluation
is based on the fitness function, f, according to f = (e- o)+

(% (1= a)), where € is the code coverage achieved by

the test case, « is a weighting parameter between 0 and 1,
Pexec the number of executed control structures, and peot
the total number of existing control structures. Thus, the
fitness value is a value between 0 and 1, where a value close
to 1 indicates better individuals.

In our experiment we have used a = 0.5, but for future
work it might be beneficial to investigate (dynamic) adap-
tation of this parameter to overcome plateaus in the fitness
landscape or extending the coverage tool so that full branch
coverage can be used instead. Currently the information
about covered control structures is extracted from the out-
put of the coverage tool.

The combination of two individuals for the constructor
and the method under test, concerns the argument list. In
this case, the information of the argument list is exchanged
at a randomly selected position. If the individuals to be
combined, have argument lists of different length, the shorter
one is padded with null arguments. After the combination
all arguments after a null argument are discarded.

If individuals have two completely different type patterns,
then the result may be a new combination of types. While
the parents were applicable, in the sense of not leading to an
exception when executed, one or both of the children may
have inapplicable type patterns. We distinguish between
applicable and inapplicable type patterns when evaluating
the individuals and repeat the cross-over operation until ap-
plicable type patterns are found. We limit the number of
retries and go back to select a new set of individuals for
selection if the retries limit is reached.

The cross-over of the method call sequences of two in-
dividuals is done by selecting, randomly, two positions for
each individual, at which the sequences after the chosen po-
sitions are substituted with each other. This cut-and-splice
type of cross-over operator allows for growing or shrinking
the length of the method call sequences.

The mutation operator is applied with a predefined prob-
ability to randomly selected individuals. For the constructor
and the method under test, there are two possibilities of mu-
tation: i) Generate a new type pattern. ii) Produce a new
input value for one of the existing arguments. The gener-
ation of a new type pattern is applied to cover type com-
binations, that otherwise would not be tested. A separate
table is maintained to keep track on already executed type
combinations. In the case where all possible type patterns

have been tested at least once, the mutation concerns only
the argument value. For the mutation of the method call se-
quence, a position is randomly selected, at which a method
is either added or removed from the current sequence. In
case of the addition, a method from the class under test is
randomly chosen and added to the sequence.

S. EXPERIMENT

In this experiment we wanted to test the applicability of
RuTeG and examine which code portions are difficult to
cover. We also wanted to evaluate the strength of the system
in comparison to random test generation. Below we describe
the random test generator we compared to, the parameters
used for RuTeG and the test cases we used.

5.1 Random Test Generator

There are several possible random test generators that Ru-
TeG could be compared to. However, in practice we argue
that if any automated test generation is used, it is likely to
be completely random rather than incorporating some learn-
ing aspect. We have thus opted to generate test sequences
and input data fully randomly. The generation uses the con-
structor for the class to be tested and then randomly creates
a sequence of method invocations of random length. The
random length is bounded to be a maximum of two times
the number of methods in the class under test. Method
calls, data generators and their specific input data are then
randomly generated to create a sequence of the given length.

Every test case is generated independent from previous
test cases; there is no search or evaluation being applied for
the random testing component.

5.2 RuTeG Search and Parameter Settings

The genetic search used in RuTeG uses a tournament se-
lection method for the selection of individuals, a one-point
crossover for the combination of argument lists and a cut
and splice method for the combination of the method se-
quences. The cross-over rate is 1.0 since two parents are
always allowed to be mated.

The mutation operator is applied with a probability of 0.2
and either affect the argument list by generating a new input
pattern to cover new combinations that has not been used
so far, or by generating new input values. The mutation
operator can also affect the method sequence by adding or
removing methods at a random position.

No specific constraints was used for the data generators.
Only the base type generators for integers, floats, arrays,
etc. was used as well as a test case specific ones such as an
ISBN string generator for the ISBN test case.

Table 1 shows the parameter settings used in the experi-
ment.

5.3 Test Methods Used in Experiment

A number of different test candidates were selected, that
varied in their code complexity and structure as well as
the complexity of input data they require. They ranged
from classical code snippets, to more complex methods taken
from the Ruby Standard Library and open source projects.
Columns 1-4 in Table 2 lists the test candidates; below we
give a brief summary of a select few. Projects can be found
at http://rubyforge.org/ and http://raa.ruby-lang.org/.
ISBN Checker. The ISBN checker is a small tool that
takes a string as input, and checks whether it is a valid



Table 1: Parameter settings for the experiment.
Param. Setting Comment
Population 50
slze

Selection Tournament Tournament size = 4

method

Mutation 0.2 Mutate the input pattern or mu-
rate tate an input value

Cross-over 1.0 One-point xover for argument lists,

rate cut & splice for method call lists

Initial Random Random with a max length of two

sequence times the number of methods in

length the class under test, cut & splice
cross-over can change length dy-
namically

Weight 0.5 Half fitness on coverage, half on

param. « covering control structures

ISBN10 or ISBN13 code. An ISBN code is a sequence of nu-
merical characters of length 10 or 13, whereas the last char-
acter can be any number between 0 and 9 or ‘X’. RBTree.
RBTree is a sorted associative collection using Red-Black
Tree as the internal data structure. RubyGraph. Ruby-
Graph is an implementation for directed and undirected
graph data structures and algorithms. The tool includes a
number of different graph algorithms, such as Breadth First
Search (BFS), Depth First Search (DFS) and the Floyd-
Warshall algorithm. RubyChess. RubyChess is a stand-
alone chess engine that comes with a graphical Ruby/Tk
user interface, to play chess against the computer.

The outcome of this experiment is compared with the re-
sults obtained by random testing. The random test case
generator uses the Analyser, to receive information about
the class under test and its methods, and produces test cases,
by randomly selecting any type combination, data genera-
tor, and method sequence.

Each test candidate was tested 30 times, to obtain a good
estimated result and to make sure that the data was con-
sistent. A test run terminated when full code coverage was
achieved, or when a predefined time was exceeded. This
predefined time varied between different test candidates,
since they differ in their complexity and required input data.
However, the time constraint is the same regardless of the
used test case generator. Experiments were run on a PC
with an Intel Core Duo 2.00GHz CPU, 2GB of RAM and
Windows XP SP2. The Ruby version used was 1.8.6.

6. RESULTS

Table 2 shows the average code coverage achieved by Ru-
TeG and the random test case generator for each test can-
didate. RuTeG could achieve full code coverage in 11 of 14
cases, where the lowest average code coverage was 88%. On
the other hand, the random test case generator could find
test scenarios that cover all the code only in 4 of 14 cases.
The lowest average code coverage achieved by random test-
ing (RT) was 68%.

We then tested the null hypothesis that there is no ob-
servable difference between the coverage achieved by RuTeG
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Figure 3: Average code coverage for move method.

and by random testing. After testing the data for normal-
ity, using the Shapiro-Wilk test at the 5% level, we applied
the t-test on the data sets for each test case used. In cases
where a difference was perceived, the probability that the
results were obtained by chance is less than 5% (*) or even
less than 1% (7). In Table 2 one can see that Hy can be
rejected on ten occasions.

Furthermore, Table 2 shows the time to maximum cover-
age for both test case generators. Hence, RuTeG does not
only achieve higher code coverage, but also finds solutions
quicker than the random test case generator. The difference
in time is not always significant, but in such situations one
can consider also the difference in code coverage. We con-
sider the time needed as more significant than the number
of iterations, generations or evaluations, since the absolute
time makes for a more fair comparison between different
techniques.

Figures 2, 3 and 4 show the results of some test candidates
in a line chart and is typical of the other tests in the experi-
ment. The solid line represents RuTeG, whereas the dashed



Table 2: Average code coverage achieved by RuTeG and random testing (RT), with t-test where

* o .
indicates

**x o, . . . .
p < 0.05 and indicates p < 0.01; and the time to maximum coverage expressed in seconds.

Project Method SLOC CC | Cov. RuTeG Cov. RT Time RuTeG Time RT

Triangle triangle_type 26 8 100% 81% 59 99

ISBN Checker valid_isbn10? 18 7 100% 100% 29 84

valid_isbn137 13 6 100% 100% 34 80

AddressBook add_address 10 3 100% 100% 56 97

RBTree rb_insert 49 7 100% 8% 68 92

Bootstrap bootstrapping 38 9 100% 86% 54 88

RubyStat gamma 116 6 98% 92% 209 213

RubyGraph bfs 39 12 100% 93% * 79 86

dfs 34 10 100% 9%6% 70 72

warshall floyd_shortest_paths 26 11 100% 100% 155 196

Ruby 1.8 rank 56 13 100% 92% * 111 202

** (power!) 59 16 100% 9%6% " 274 356

RubyChess canBlockACheck 23 10 94% 74% 285 333

move 111 26 88% 68% 356 143

TOTAL (Average): 44.1  10.3 98.6% 90.4% 131.4 152.9
7. DISCUSSION

100 T " T T ; T In this study, we presented a possible solution to auto-

J matically generate test cases for a dynamic programming

language. Furthermore, the generation of input values is

not limited on numbers and string values, but can produce

different complex types of input data. We implemented a

tool (RuTeG) in Ruby, that applies GA to produce test sce-

narios, with the goal to achieve full code coverage. RuTeG

was tested in an experiment and compared with the results

of random test case generation. The results show that the

presented approach offers a possibility to automatically gen-

erate test cases for a dynamic programming language. In

most of the cases, RuTeG could cover more code and find

! R‘::gzﬁ quicker solutions compared to the random test case genera-
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Figure 4: Average code coverage for canBlockACheck.

line represents the random test case generator. The aver-
age code coverage is displayed on the y axis and the time,
expressed in seconds, on the x axis. From the line charts
it is possible to see that in some cases, there is already at
the beginning a major difference between the two results.
This can be seen especially in Figures 2 and 4. There is also
a difference observable at the end, where the average code
coverage achieved by RuTeg is higher than the average code
coverage of random testing. In Figure 2 the two results differ
at the beginning, whereas the random test case generator is
able to catch up with RuTeG as the time progresses. How-
ever, there is still a significant difference in the final result,
in which RuTeG could cover more code than the random
test case generator. From Figure 3 it can be seen, that both
data generators could cover much code within a short time.
However, the random test case generator hardly found new
test scenarios that could contribute to the coverage, whereas
the line of RuTeG shows a slow increase, which results in a
higher code coverage at the end compared to random test-

ing.

dom testing. There was no situation in which the random
test case generator outperformed RuTeG.

A weakness of RuTeG could be observed in the genera-
tion of method sequences, especially when there is a strong
dependency between the methods, such that a specific or-
der is required. As long as there are only few methods that
play an important role to satisfy a certain condition, it is
possible to find adequate test scenarios. However, the more
complex the method sequence becomes, the more difficult it
is to find possible test cases. This could, for example, be
observed while applying RuTeG on the Ruby/TK library.

A further limitation of RuTeG, is the set of data genera-
tors. When the standard or available data generators are not
sufficient to find input values for a certain argument, then
the specification of an additional data generator is required.
RuTeG can not currently evolve data generators automati-
cally such that better input values are produced. However,
as the system is extended a reuseable set of generators can
be built up much as described in [5].

RuTeG is able to test methods with required arguments,
arguments that have a default value, and arguments of vari-
able length. An unsolved problem is still the generation of
code blocks as parameters. RuTeG currently generates an
empty code block if required. This, however, does not guar-
antee the generation of successful test scenarios.



If we compare the implementation of RuTeG and the ran-
dom test case generator the latter is, naturally, simpler. The
core of RuTeG is the Test Case Generator, which implies a
GA. The size of the RuTeG-specific code is 780 lines of code.
Not included are the Analyser, Test Case Executor, and the
different data generators, which are the same in both cases.

The applicability and efficiency of the tool was tested in an
experiment on 14 openly available software artefacts. Even
though the total number of test cases, and lines of code they
cover in total is limited, they are representative of real-world
Ruby code.

One characteristic of Ruby, which can also be found in
other dynamic programming languages, is its reflective abil-
ity. This makes it easier to collect relevant information
about classes and methods at runtime. In such a situation
it does not matter, where parts of a class are defined, as
long they are available when the object is created. RuTeG
makes use of this ability to search for methods that may
change the internal state of an object as well as identifying
their arguments. However, for dynamic programming lan-
guages where run-time creation and addition of code is more
common it is not clear that our approach could be directly
adapted.

Another characteristic, that many dynamic programming
languages have in common, is ‘duck typing’. This makes it
difficult to identify the input data for method invocations,
also because an argument can be used in different ways. Ru-
TeG presents a possible approach to classify such applica-
ble type combinations and to disqualify inappropriate types.
‘We think this type of mechanism is essential to limit the size
of the search space that needs to be considered.

But also the usage of basic types may become quite com-
plex, especially when there is only a small solution space, in
which a certain condition can be satisfied. This may con-
cern single arguments, but also a combination of arguments,
which is the case for the triangle test candidate. In that sit-
uation, each argument depends on other values, and only if
all three arguments have the same positive numerical value,
then it is possible to form an isosceles triangle.

Another complexity factor is the sequence of method in-
vocations. This may concern an object passed as argument,
but also the object under test. Often it is not the input
value that determines whether a specific code portion is exe-
cuted, but the internal state of an object. In order to satisfy
a certain condition, it may be necessary to call a specific
method multiple times. But also the sequence of method
calls may increase in complexity, especially when there is
a dependency between each method, e.g. a specific order is
required.

RuTeG addresses the different kinds of complexity with
the definition and selection of specific data generators and
the evolution of test candidates. This can help to find addi-
tional test cases that contribute to a higher code coverage,
and is probably the reason for the better results in the ex-
periment compared to random testing.

The fitness function we use is a very simple one and sev-
eral extensions can be considered. For example, it has been
common in literature to use some indication of the distance
from boundary values in conditions that would make missed
branches to be taken. We use no such measures in our ap-
proach and thus there is only a minimal of help in guiding
the search. On the other hand, this strengthens our results
since we still get better results than a random search; it is

likely that we can improve coverage further by extending the
fitness measure.

7.1 Validity Analysis

In our experiment we tested each test candidate 30 times,
to obtain a good estimated result and to make sure that the
data was consistent. The results were then presented as the
average of all test runs. In addition we applied the Student’s
t-test, to analyse the statistical significance.

A possible threat to internal validity may be the com-
parison of the results with the random test case generator.
There are different possibilities to implement such a genera-
tor. The implementation of the used random test case gen-
erator selects randomly one of the available data types and
existing data generators, to produce a possible input value.
This may not be the natural solution for static program-
ming languages, where the input type is known and values
randomly generated by a selected data generator. However,
for dynamic programming languages, the situation differs,
since we can not know which types are valid. Therefore, the
random test case generator must randomly choose between
all available data generators, if we want the same level of
automation. This in turn may have some disadvantages for
the random test case generator. The larger the set of avail-
able data generators, the less efficient is the random test
case generator.

Construct validity addresses the issue whether a test mea-
sures what it claims to measure. A way to ensure construct
validity, is to use multiple and different measures that are
relevant for the purpose. We wanted to test the performance
of the implemented tool on a number of test candidates.
Therefore we measured the time that was needed to achieve
a certain level of code coverage. In addition we wanted to
test the quality of the tool, which was done by measuring
the coverage achieved by the generated test cases.

Ezternal validity is related to generalisability. RuTeG
makes use of Ruby’s reflective ability. This is a character-
istic that many dynamic programming languages have in
common, whereas the information that they provide may
differ from Ruby. Thus, RuTeG is partially a Ruby spe-
cific implementation. However, the core of RuTeG, namely
the test case and data generator, is independent from Ruby
specific code and thus applicable in any other dynamic pro-
gramming language. Another possible threat to external
validity could be the selection of test candidates, which was
not chosen randomly from the population, since we wanted
to have candidates to cover different criteria.

8. CONCLUSIONS

In this study we implemented RuTeG, a tool to automat-
ically generate test cases for the dynamic programming lan-
guage Ruby. RuTeG can be used for different kinds of input
values. The system was tested on 14 test candidates, which
differ in their code complexity and structure as well as the
complexity of input data they require. The result of the
experiment showed the applicability of the tool and that it
was possible to find test cases to cover specific portions of
code.

RuTeG could achieve full code coverage in 11 of 14 cases,
while the random test case generator only succeeded on 4
occasions. In 10 of 14 cases RuTeG found test cases that
showed a significantly higher code coverage than random
generation. A difference was also observable in the time



required to find possible test cases, where RuTeG could find
solutions faster than the random test case generator.

The goal of RuTeG is to find test scenarios in order to
cover as much code as possible. However, statement cover-
age is not a very strong coverage criterion. A possible future
step would be aiming for branch or condition coverage; cur-
rently there are no tools to evaluate these coverage measures
for Ruby code. Even so it is encouraging that RuTeG works
well even with simplistic coverage criteria and choices.

The current version of RuTeG searches for applicable type
combinations, and then for each type selects an adequate
data generator. This intermediate step is not necessary. A
more efficient solution would be to use directly the set of
available data generators. In this case the system would
search for a combination of applicable generators instead of
data types, which may improve the performance but also
the quality of generated test cases.
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