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Search-based software testing is the application of metaheuristic search techniques to generate software
tests. The test adequacy criterion is transformed into a fitness function and a set of solutions in the search
space are evaluated with respect to the fitness function using a metaheuristic search technique. The
application of metaheuristic search techniques for testing is promising due to the fact that exhaustive
testing is infeasible considering the size and complexity of software under test. Search-based software
testing has been applied across the spectrum of test case design methods; this includes white-box (struc-
tural), black-box (functional) and grey-box (combination of structural and functional) testing. In addition,
metaheuristic search techniques have also been applied to test non-functional properties. The overall
objective of undertaking this systematic review is to examine existing work into non-functional
search-based software testing (NFSBST). We are interested in types of non-functional testing targeted
using metaheuristic search techniques, different fitness functions used in different types of search-based
non-functional testing and challenges in the application of these techniques. The systematic review is
based on a comprehensive set of 35 articles obtained after a multi-stage selection process and have been
published in the time span 1996–2007. The results of the review show that metaheuristic search tech-
niques have been applied for non-functional testing of execution time, quality of service, security, usabil-
ity and safety. A variety of metaheuristic search techniques are found to be applicable for non-functional
testing including simulated annealing, tabu search, genetic algorithms, ant colony methods, grammatical
evolution, genetic programming (and its variants including linear genetic programming) and swarm
intelligence methods. The review reports on different fitness functions used to guide the search for each
of the categories of execution time, safety, usability, quality of service and security; along with a discus-
sion of possible challenges in the application of metaheuristic search techniques.
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1. Introduction

Search-based software engineering (SBSE) is the application of
optimization techniques in solving software engineering problems
[1,2]. The applicability of optimization techniques in solving soft-
ware engineering problems is suitable as these problems fre-
quently encounter competing constraints and require near
optimal solutions. Search-based software testing (SBST) research
has attracted much attention in recent years as part of a general
interest in SBSE approaches. The growing interest in SBST can be
attributed to the fact that generation of software tests is generally
considered as an undecidable problem, primarily due to the many
possible combinations of a program’s input [3]. All approaches to
SBST are based on satisfaction of a certain test adequacy criterion
represented by a fitness function [2]. McMinn [3] has written a
comprehensive survey on search-based software test data genera-
tion. The survey shows the application of metaheuristics in white-
box, black-box and grey-box testing. Within the domain of non-
functional testing, the survey indicates the application of metaheu-
ristic search techniques for checking the best-case and worst case
execution times (BCET, WCET) of real-time systems. McMinn high-
lights possible directions of future research into non-functional
testing, which includes searching for input situations that break
memory or storage requirements, automatic detection of memory
leaks, stress testing and security testing. Our work extends the sur-
vey by McMinn [3] as it analyses actual evidence supporting McM-
inn’s ideas of future directions in search-based testing of non-
functional properties. Moreover, we anticipated studies making
use of search-based techniques to test non-functional properties
not highlighted by McMinn. This work also supports McMinn’s sur-
vey by finding further evidence into search-based execution time
testing. Another review by Mantere and Alander [4] highlights
work using evolutionary computation within software engineer-
ing, especially software testing. According to the review, genetic
algorithms are highly applicable in testing coverage, timings,
parameter values, finding calculation tolerances, bottlenecks, prob-
lematic input combinations and sequences. This study also extends
and supports Mantere and Alander’s review in actually finding the
evidence in support of proposed future extensions.

Within non-functional search-based software testing (NFSBST)
research, it is both important and interesting to know the extent
of application of metaheuristic search techniques to non-func-
tional testing, not covered by previous studies. This allows us to
identify potential non-functional properties suitable for applying
these techniques and provides an overview of existing non-func-
tional properties tested using metaheuristic search techniques. In
this paper, after identifying existing non-functional properties,
we review each of the properties to determine any constraints
and limitations. We also identify the range of different fitness func-
tions used within each non-functional property, since the fitness
function is crucial in guiding search into promising areas of solu-
tion space and is the differentiating factor between quality of dif-
ferent solutions. The contribution of this review is therefore an
exploration of non-functional properties tested using metaheuris-
tic search techniques, identification of constraints and limitations
encountered and an analysis of different fitness functions used to
test individual non-functional property.

Section 2 describes the method of our systematic review that
includes the research questions, search strategy, study selection
criteria, study quality assessment and data extraction. Sections 3
and 4 discusses the results, synthesis of findings, areas of future re-
search and validity threats. Conclusions are presented in Section 6.

2. Method

A systematic review is a process of assessment and interpreta-
tion of all available research related to a research question or sub-
ject of interest [5]. Kitchenham [5] also describes several reasons of
undertaking a systematic review, the most common are to synthe-
size the available research concerning a treatment or technology,
identification of topics for further investigation and formulation
of a background in positioning new research activities.

This section describes our review protocol, consisting of several
steps as outlined in Kitchenham [5].

2.1. Research questions

In order to examine the evidence of testing non-functional
properties using metaheuristic search techniques, we have the fol-
lowing research questions:

– RQ 1. In which non-functional testing areas have metaheu-
ristic search techniques been applied?
After having identified these areas, we have three additional
research questions applicable in each area:

– RQ 1.1. What are the different metaheuristic search tech-
niques used for testing each non-functional property?

– RQ 1.2. What are the different fitness functions used for test-
ing each non-functional property?

– RQ 1.3. What are the current challenges or limitations in the
application of metaheuristic search techniques for testing
each non-functional property?

The population in this study is the domain of software testing.
Intervention includes application of metaheuristic search tech-
niques to test different types of non-functional properties. The
comparison intervention is not applicable in our case as our re-
search questions are not aimed at making a comparison. However,
we discuss the comparisons within the scope of each primary
study to support our argumentation of obtained results in Section
4. The outcome of our interest represents different types of non-
functional testing that use metaheuristic search techniques. In
terms of context and experimental design, we do not enforce any
restrictions.

2.2. Generation of search strategy

The search strategy was based on the following steps:

(i) Identification of alternate words and synonyms for terms used
in the research questions. This is done to minimize the effect
of differences in terminologies.

(ii) Identify common non-functional properties for searching. We
take non-functional properties as to encompass the three
aspects of software quality defined in ISO/IEC 9126-1 [6].
These aspects are quality in use, external quality and inter-
nal quality. Quality in use refers to software product quality
in a specific context of use, while external quality is the



1 GECCO was not part of ACM until 2005.

Fig. 1. The two-phase search strategy.
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quality observable at software execution. Lastly, internal
quality is measured against the internal quality require-
ments.
Since there are different systems of categorizing non-func-
tional properties, we take guidance from four existing taxo-
nomies to aid our search strategy and to have a
representative set of non-functional properties. These are
Boehm software quality model (as described in Fenton [7]),
ISO/IEC 9126-1 [6], IEEE Standard 830-1998 [8] and Donald
G. Firesmith’s taxonomy [9]. The non-functional properties
used for searching are usability, safety, robustness, capacity,
integrity, efficiency, reliability, maintainability, testability,
flexibility, reusability, portability, interoperability, security,
performance, availability and scalability. To cover other
potential non-functional properties, we explicitly used the
term ‘non-functional’ in our search strings.
The non-functional properties obtained from existing taxo-
nomies are restricted to high-level external attributes only
for the sole purpose of guiding the search strategy. The dif-
ferent non-functional testing areas that are discussed later
in the paper cannot be mapped one to one with these listed
non-functional properties. Therefore, while quality of service
includes attributes; namely availability and reliability, we
have retained the term quality of service for the later part
of the paper to better reflect the terms as used by the origi-
nal authors. Similarly, one can argue execution time to fit
under performance, but we stick to the term execution time
in the later part of the paper to remain consistent with the
terms used by the original authors.

(iii) Use of Boolean OR to join alternate words and synonyms.
(iv) Use of Boolean AND to join major terms.

We used the following search terms:

– Population: testing, software testing, testing software, test
data generation, automated testing, automatic testing.

– Intervention: evolutionary, heuristic, search-based, metaheu-
ristic, optimization, hill-climbing, simulated annealing, tabu
search, genetic algorithms, genetic programming.

– Outcomes non-functional, safety, robustness, stress, security,
usability, integrity, efficiency, reliability, maintainability,
testability, flexibility, reusability, portability, interoperabil-
ity, performance, availability, scalability

We used a two-phase strategy for searching. In the first
phase, we searched electronic databases and performed a man-
ual search of specific conference proceedings and journals. We
selected 1996 as the starting year for the search since this year
marked the first publication of the application of genetic algo-
rithms to execution time testing [3] (one of the earliest non-
functional properties to be tested using metaheuristic search
techniques). We searched within the following electronic
databases:

– IEEEXplore.
– EI Compendex.
– ISI Web of Science (WoS).
– ACM Digital Library.

In the first phase of the search strategy, we piloted the search
strings thrice for the year 2007, each time refining them to elimi-
nate irrelevant hits. We found it as a useful activity to pilot the
search strings in iterations as it resulted in much refinement of
search results. It also helped us to deal with the challenging task
of balancing comprehensiveness versus precision of our search.
We applied separate search strings for searching within titles, ab-
stracts and keywords. Complete search strings are given in Appen-
dix A.

We manually searched selected journals (J) and conference pro-
ceedings (C). These journals and conferences were chosen as they
had previously published primary studies relevant to our domain.
They include: real time systems symposium (RTSS) (C), real-time
systems (RTS) (J), genetic and evolutionary computation confer-
ence (GECCO)1 – Search-based software engineering (SBSE) track
(C), software testing, verification and reliability (STVR) (J) and soft-
ware quality journal (SQJ) (J).

We initiated a second phase of search to have a more represen-
tative set of primary studies. In this phase, we scanned the refer-
ence lists of all the primary studies to identify further papers.
We then contacted the researchers who authored most of the pa-
pers in a particular non-functional area for additional papers.
Moreover, we scanned the personal web pages maintained by
these researchers. A total of four researchers were contacted.
Fig. 1 shows our two-phase search strategy.

In order to assess the results of the search process, we compared
the results with a small sample of primary studies we already knew
about [10–12], to ensure that the search process was able to find the
sample (as described in [13]). All the three known papers were
found using nine sources, namely (IEEE Xplore, Compendex, web
of science, ACM digital library, real-time systems symposium (C),
real-time systems (J), GECCO SBSE track (C), software testing, veri-
fication and reliability (J), software quality journal (J)).

2.3. Study selection criteria and procedures for including and excluding
primary studies

Metaheuristic search techniques have been applied across dif-
ferent engineering and scientific disciplines. Within software test-
ing, metaheuristic search techniques have found application in
different phases, from planning to execution. Therefore, it is imper-
ative that we define comprehensive inclusion/exclusion criteria to
select only those primary studies that provide evidence related to
the research questions. The following exclusion criteria is applica-
ble in this review, i.e. exclude studies that:

– Do not relate to software engineering/development.
– Do not relate to software testing.
– Do not report application of metaheuristics. (We consider

metaheuristics to include hill-climbing, simulated anneal-
ing, tabu search, ant colony methods, swarm intelligence
and evolutionary methods [14].)

– Describe search-based testing approaches, which are inher-
ently structural (white-box), functional (black-box) or
grey-box (combination of structural and functional).
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Grey-box testing includes assertion testing and exception
condition testing [3]. This exclusion criterion is relaxed to
include those studies where a structural test criterion is used
to test non-functional properties, e.g. [15].

– Are not related to the testing of the end product, e.g. [16].
– Are related to test planning, e.g. [17].
– Make use of model checking and formal methods, e.g.

[18,19].
– Report performance of a particular metaheuristic instead of

its application to software testing, e.g. [20].
– Report on test case prioritization, e.g. [21].
– Are used for prediction and estimation of software proper-

ties, e.g. [22].

The first phase of research resulted in a total of 501 papers.
After eliminating duplicates found by more than one electronic
database, we were left with 404 papers. Table 1 shows the distribu-
tion of papers before duplicate removal among different sources.

The exclusion was done using a tollgate approach (Fig. 2). To be-
gin with, a single researcher excluded 37 references out of a total of
404 primarily based on title and abstract, which were clearly out of
scope and did not relate to the research question. The remaining
367 references were subject to detailed exclusion criteria, which
involved three researchers. First, each researcher applied the
Fig. 2. Multi-step filtering of studies (tollgate app

Table 1
Distribution of papers before and after duplicate removal among different publication
sources.

Source Count

IEEE Xplore 209 (179)
EI Compendex 140 (87)
ISI Web of Science 61 (48)
ACM Digital Library 58 (57)
Conferences and Journals 33 (33)
Total 501 (404)
exclusion criteria independently. Out of 367 references, the three
researchers were in agreement on 229 references to exclude, 25
to include and 113 required a meeting to reach consensus. In the
meeting, the researcher in the minority for a paper tried to con-
vince others; otherwise the majority decision was taken. This
application of detailed exclusion criteria resulted in 60 remaining
references, which were further filtered out by reading full-text. A
final figure of 24 primary studies was reached after excluding sim-
ilar studies that were published in different venues. The 24 pri-
mary studies were complemented with 11 more papers from
phase 2 of the search strategy (Fig. 1). The fact that we gathered
11 papers from phase 2 of the search strategy indicates that mak-
ing a generic search string that would give the entire relevant set of
primary studies from searching only within electronic databases is
difficult in the field of study under investigation. The terminologies
used by various authors differed a lot; both in terms of specifying
the non-functional property and the used metaheuristic. As an
example, if we consider the primary study [23], identified using
phase 2, we observed that although it does mention using genetic
programming in the title, it does not mention the target non-func-
tional property of security. Similarly, in the abstract and key words,
we do not find words synonymous to testing. Therefore, we believe
that the phase 2 of the search strategy helped us to gather a more
representative set of primary studies.

2.4. Study quality assessment and data extraction

Since we did not impose any restriction in terms of any specific
research method or experimental design, therefore the study qual-
ity assessment covered both quantitative and qualitative studies.
The quality data can be used to devise a detailed inclusion/exclu-
sion criteria and/or to assist data analysis and synthesis [5]. We ap-
plied the study quality assessment primarily as a means to guide
the interpretation of findings for data analysis and synthesis [5],
so as to avoid any misinterpretation of results due to study quality.
We did not assign any scores to the criterion (because our aim was
roach) and final number of primary studies.



Table 2
Distribution of primary studies per non-functional area.

Non-functional property Author(s) Year References

Execution time (42.86%) Wegener et al. 1996 [25]
Alander et al. 1997 [26]
Wegener et al. 1997 [27]
Wegener et al. 1998 [10]
O’Sullivan et al. 1998 [28]
Tracey et al. 1998 [29]
Mueller et al. 1998 [30]
Puschner et al. 1998 [31]
Pohlheim et al. 1999 [32]
Wegener et al. 2000 [33]
Groß et al. 2000 [34]
Groß 2001 [35]
Groß 2003 [36]
Briand et al. 2005 [12]
Tlili et al. 2006 [11]

Quality of service (5.71%) Canfora et al. 2005 [37]
Di Penta et al. 2007 [38]

Security (20%) Dozier et al. 2004 [39]
Kayacik et al. 2005 [40]
Budynek et al. 2005 [41]
Del Grosso et al. 2005 [42]
Kayacik et al. 2006 [43]
Kayacik et al. 2007 [23]
Del Grosso et al. 2007 [44]

Usability (20%) Stardom 2001 [45]
Cohen et al. 2003 [46]
Cohen et al. 2003 [47]
Cohen et al. 2003 [48]
Nurmela 2004 [49]
Shiba et al. 2004 [50]
Bryce et al. 2007 [51]

Safety (11.43%) Tracey et al. 1999 [52]
Abdellatif-Kaddour et al. 2003 [53]
Baresel et al. 2003 [15]
Pohlheim et al. 2005 [54]
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not to rank studies according to an overall quality score) but used a
binary ‘yes’ or ‘no’ scale [24]. Table 15 in Appendix A shows the
application of the study quality assessment criteria where a (

p
)

indicates ‘yes’ and (�) indicates ‘no’. Most of our developed criteria
were fulfilled by all of the studies, exceptions being
[34,35,12,15,54] where evidence of a comparison group was miss-
ing, but these quality differences were not found to be largely con-
founded with study outcomes. What follows next is the list of
developed criteria:

– Is the reader able to understand the aims of the research?
– Is the context of study clearly stated, that includes popula-

tion being studied (e.g. academic vs. industrial) and tasks
to be performed by population (e.g. small scale vs. large
scale)

– Was there a comparison or control group?
– Are the measures used in the study fully defined [5]?
– Is there an adequate description of the data collection

methods?
– Does the data collection methods relate to the aims of the

research?
– Is there a description of the method used to analyze data?
– Are the findings clearly stated and relate to the aims of

research?
– Is the research useful for software industry and research

community?
– Do the conclusions relate to the aim and purpose of research

defined?

We designed a data extraction form to collect information
needed to address the review questions and data synthesis. Study
quality data was not part of data extraction form as it was assessed
separately. To assess the consistency of data extraction, a small
sample of primary studies were used to extract data for the second
time. In addition to the standard information of title, author(s),
journal and publication details; the data extraction form included
information about main theme of study, motivation for the main
theme, type of non-functional testing addressed, type of metaheu-
ristic search technique used, examples of application of approach,
constraints/limitations in the application of the metaheuristic
search technique, identified areas of future research and major
conclusion. For each primary study, we further extracted the infor-
mation relating to the method of evaluation, number of test ob-
jects, performance factor evaluated and the experimental
outcomes.
3. Results and synthesis of findings

In this section we describe the descriptive evaluation of the as-
sessed literature in relation to the research questions. The 35 pri-
mary studies were related to the application of metaheuristic
search techniques for testing five non-functional properties: exe-
cution time, quality of service (QoS), security, usability, and safety.
The number of primary studies describing each non-functional
property is: 15 (execution time), 2 (quality of service), 7 (security),
7 (usability) and 4 (safety). Relevant information describing the
distribution of primary studies within each non-functional prop-
erty is shown in Table 2.

Fig. 3 shows the year-wise distribution of primary studies with-
in each non-functional property as well as the frequency of appli-
cation of different metaheuristics [55]. The bubble at the
intersection of axes contains the reference number(s) of the contri-
bution(s). It is evident from the figure that genetic algorithms are
the most widely used metaheuristic with applications in 21 papers
across different types of non-functional testing. In the left quadrant
of Fig. 3, each bubble represents the reference numbers of primary
studies within each non-functional area in respective years from
1996 to 2007. More details on Fig. 3 can be found in [55] which
is a systematic mapping study, giving a broad overview of studies
without reviewing the studies in detail.

3.1. Execution time

The application of evolutionary algorithms to test real-time
requirements in embedded computer systems involves finding
the best and worst case execution times (BCET, WCET) to deter-
mine if timing constraints are fulfilled. A violation of the timing
constraint or temporal error means that either the outputs are pro-
duced too early, or their computation takes too long [10]. The use
of evolutionary computation to find the input situations causing
longest or shortest execution times is an example of evolutionary
testing. Evolutionary testing is seen as a promising approach for
verifying timing constraints and a number of studies proving the
efficacy of the approach can be found in literature. This dynamic
approach to verify timing constraints involves testing the run-time
behavior of an embedded system based on execution in an applica-
tion environment. Testing of real-time systems is found to be
costly as compared to conventional applications as additional
requirements of timeliness, simultaneity and predictability needs
to be tested. Although there are numerous methods to test logical
correctness, the lack of support for testing temporal behavior [30]
motivated the use of evolutionary computation in testing extreme
execution times.

In Wegener et al. [25], genetic algorithms (GA) were used to
search for input situations that produce very long or very short
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execution times. The fitness function used was the execution time
of an individual measured in micro seconds. The experimental re-
sults using a simple C function showed that the longest execution
time of 26.27 ls was found very quickly with GA in less than 20
generations. Moreover, a new shortest execution time of 5.27 ls,
which was not discovered by statistical and systematic testing,
was found. This study marks one of the earliest use of GA to test
temporal correctness of real-time systems.

Alander et al. [26] presented experiments performed in a simu-
lator environment to measure response time extremes of protec-
tion relay software using genetic algorithms. The fitness function
used was the response time of the tested software. The results
showed that GA generated more input cases with longer response
times. In Wegener et al. [27], experiments were performed using
genetic algorithms involving five test objects from different appli-
cation domains having varying lines of code and integer input
parameters. This time the fitness function used was the execution
time measured in terms of processor cycles rather than seconds.
The results show that GA consistently outperformed random test-
ing by finding more extreme times.

The research community soon realized the benefits of measure-
ment in terms of processor cycles; being more precise and inde-
pendent of the interrupts from the operating system (e.g. context
switching and paging). Also measurement in terms of processor cy-
cles is deterministic in the sense that it is independent of system
load and results in the same execution times for the same set of in-
put parameters. However, such a measurement is dependent on
the compiler and optimizer used, therefore, the processor cycles
differ for each platform [27].

Wegener and Grochtmann [10] continued further with experi-
mentation to compare evolutionary testing (using genetic algo-
rithms) with random testing. The fitness function used was
duration of execution measured in processor cycles. This time
the range of input parameters was raised to 5000. The results
showed that, with a large number of input parameters, evolution-
ary testing obtained more extreme execution times with less or
equal testing effort than random testing. In order to better evaluate
the application of evolutionary testing, Groß et al. [56] presented
the design of an operational experimental environment for evolu-
tionary testing with the integration of a commercially available
timing package.

The aforementioned experimental results identified several lim-
itations when using evolutionary testing. The instrumentation re-
quired for the software under test (SUT), which extends the
executable programming code by inserting hardware dependent
counting instructions, is bound to affect the execution times. Also
as a typical search strategy, it is difficult to ensure that the execu-
tion times generated in the experiments represents global opti-
mum. More experimentation is also required to determine the
most appropriate and robust parameters. Lastly, there is a need
for an adequate termination criterion to stop the search process.

In Sullivan et al. [28], cluster analysis was used on the popula-
tion from the most recent generation to determine if GA should
terminate. Execution time measured in processor cycles was used
as a fitness function and a complex algorithm from the domain
of automotive electronics was used for seven runs of GA. Cluster
analysis was performed on the final population (generation 399)
of each run. With cluster analysis, it was possible to examine
which of the test runs converged to local optima and thus contin-
uing with these runs would not yield better results. The results of
the study demonstrated the potential of incorporating cluster anal-
ysis as a useful termination criterion for evolutionary tests and
suggested appropriate changes in the search strategy to include
cluster analysis information.

Tracey et al. [29] applied simulated annealing (SA) to test four
simple programs for WCET as part of a generalized test data gener-
ation framework. The fitness function used is the measure of actual
dynamic execution time. The WCET of the programs was already
known and a valid test case was one that exercised a path yielding
the already known WCET. The results of the experiment showed
that the use of SA was more effective with larger parameter space.
The authors highlighted the need of a detailed comparison of var-
ious optimization techniques to explore WCET and BCET of the
SUT. With this goal in mind, Pohlheim and Wegener [32] used an
extension of genetic algorithms making use of multiple sub-popu-
lations, each using a different search strategy. The authors name
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the approach as extended evolutionary algorithms. The duration of
execution measured in processor cycles was taken as the fitness
function. The extended evolutionary algorithm was applied on
two test objects. The first test object was the bubble sort algorithm
and the results from this experiment was used to find appropriate
evolutionary parameters for the second test object which con-
tained software modules from a motor control project. The evolu-
tionary algorithm found longer execution times for all the given
modules in comparison with systematic testing.

As mentioned earlier, it is difficult to ensure that the execution
times generated in the experiments represent global optimum.
Therefore it appears interesting to compare the results of evolu-
tionary testing with static analysis to find a bound within which
WCET and BCET might lie. Mueller et al. [30] presented such a
comparison. Both approaches were used in five experiments to
determine the WCET and BCET of different programs. Three pro-
grams were from real-time systems while the remaining two
were general-purpose algorithms. The fitness function used is
the execution time measured in processor cycles. The results
showed that methods of static analysis and evolutionary testing
bound the actual execution times. For WCET, the estimates of sta-
tic analysis provided an upper bound while the measurements of
evolutionary testing yielded a lower bound. Conversely, static
analysis’ estimates provided a lower bound for BCET while evolu-
tionary testing measurements constituted an upper bound. In Pus-
chner and Nossal [31], genetic algorithms were applied to find
WCET for seven programs and the results were compared with
those from random search, static analysis and best effort timings
that were researchers’ own efforts to find input data to yield
WCET. The execution time measured in processor cycles as well
as time units were used as a fitness function for different pro-
grams. Genetic algorithms found same or longer times than ran-
dom search. In comparison with best effort timings, genetic
algorithms matched the timings and found a longer time in one
case, while in comparison with static analysis, the upper bounds
were not broken but were matched on several occasions. In an-
other study, Wegener et al. [33] used genetic algorithms to test
temporal behavior of six time critical tasks in an engine control
system, with the fitness function used was execution time mea-
sured in processor cycles. Genetic algorithms outperformed both
random search and developer-made tests.

In Groß [36], 15 example test programs were used in experi-
ments to measure the maximal execution times using genetic algo-
rithms. The fitness function used was the execution time of the test
object for a particular input situation measured in microseconds.
The results of evolutionary testing were compared with random
testing and with the performance of an experienced human tester.
The results indicated that evolutionary testing outperforms ran-
dom testing as random testing could only produce about 85% of
the maximum execution times found by evolutionary testing. The
human tester was more successful in 4 out of 15 test programs,
which indicated the presence of properties of test objects that in-
hibit evolutionary testability [35] i.e. the ability of an evolutionary
algorithm to successfully generate test cases that violates the tim-
ing specification.

Groß et al. [34] presented a prediction model based on com-
plexity of the test object, which can be used to predict evolutionary
testability. It was found that there were several properties inhibit-
ing evolutionary testability, which included small path domains,
high-data dependence, large input vectors, and nesting.

Additionally, several source code measures, which map pro-
gram attributes inhibiting evolutionary testability, were also pre-
sented in Groß [35]. Code annotations were inserted into the test
object’s source code along their shortest and longest algorithmic
execution paths. The fitness function was then based on maximal
and minimal possible annotation coverage by the generated input
situations. The individual measures were combined to form a pre-
diction system that successfully forecasted evolutionary testability
with 90% accuracy.

Results from the two studies [34,35] also confirmed that there is
a relationship between the complexity of a test object and the abil-
ity of evolutionary algorithm to produce input parameters accord-
ing to B/WCET. The results also confirmed the properties (given
above) of the test programs that caused most problems for evolu-
tionary testing. Due to program properties inhibiting evolutionary
testability [36], pointed out that an ideal testing strategy is a com-
bination of evolutionary testing supported by human knowledge of
the test object. The initial population of individuals can benefit from
human knowledge to direct the search in those areas of search
space that are difficult to reach as the fitness function does not pro-
vide information to generate such unlikely input combinations.

In one of the more recent studies, Tlili et al. [11] used the ap-
proach of seeding an evolutionary algorithm with test data achiev-
ing a high structural coverage and reduction in the amount of
search space by restricting the range of input variables in the initial
population. The fitness function was the measurement of the exe-
cution time of test data as number of CPU clock ticks. The results
indicated that for almost all the test objects, application of seeding
and range restriction outperform standard evolutionary real-time
testing with random initial population when measuring long exe-
cution times. Also with seeding and range restriction, fewer gener-
ations found the longest execution times. Similar results were
achieved for finding the shortest execution times.

In Briand et al. [12,57], another approach to use genetic algo-
rithms for critical deadlines misses was used. The authors called
the approach stress testing because the system was exercised in
such a way that some tasks were close to missing a deadline. This
approach can also be called robustness testing but since the basic
objective of the paper was to find the sequence of arrival times
of events for aperiodic tasks, which will cause the greatest delays
in the execution of the target task, we choose to discuss this paper
under execution time. The study was restricted to seeding times
for aperiodic tasks and the tasks synchronization, since input data
were accounted for in execution time estimates. In comparison
with other approaches to evolutionary testing for finding the
WCET, this approach was different in the sense that test data de-
sign did not require the implementation of the system and, sec-
ondly, did not consider the tasks in isolation. Genetic algorithms
were used to search for the sequence of arrival times of events
for aperiodic tasks that would cause the greatest delays in execu-
tion of the target task. The fitness function was expressed in an
exponential form, based on the difference between the deadline
of an execution and the executions actual completion. A prototype
tool called real-time test tool (RTTT) was built to facilitate the exe-
cution of runs of genetic algorithm. Two case studies were con-
ducted; one case study consisted of researchers own scenarios
while the second consisted of an actual real-time system. The re-
sults from the timing diagrams illustrated that RTTT was a useful
tool to stress the system more than the scenarios covered by
schedulability theory.

A summary of results of applying metaheuristics for testing
temporal properties is given in Table 3.
3.2. Quality of service

Search-based testing of Quality of Service (QoS) represents a
mix of search-based software engineering and service-oriented
software engineering. Metaheuristic search techniques have been
used for quality of service aware composition and violation of ser-
vice level agreements (SLAs) between the integrator and the end
user.



Table 3
Summary of results applying metaheuristics for testing temporal properties. The last column on the right covers any issues such as constraints, limitations and highlights. (GA is
short for Genetic Algorithm, SA is short for Simulated Annealing while EGA is short for Extended GA.)

Article Applied
metaheuristic

Fitness function used Limitations and highlights

Wegener et al. [25] GA Exec. time, microseconds Instrumentation of the test objects causes probe effects.
The execution times do not always represent global optimum.

Alander et al. [26] GA Exec. time, milliseconds The experiments are performed in a simulator environment. Non-determinism
of the fitness function is problematic.

Wegener et al. [27] GA Exec. time, processor cycles The decision about when to stop the search is arbitrary.
Wegener and Grochtmann

[10]
GA Exec. time, processor cycles There is a need to find most appropriate and robust parameters for evolutionary

testing. Cluster analysis can be a used as a measure for termination of search.
O’Sullivan et al. [28] GA Exec. time, processor cycles The search strategy needs to make use of cluster analysis to react to stagnations.
Tracey et al. [29] SA Exec. time, time units Ways to reduce the amount of search space is useful. There is a need to devise

different software metrics to guide the search.
Pohlheim and Wegener [32] EGA Exec. time, processor cycles A combination of systematic and evolutionary testing is required for thoroughly

testing real-time systems. Instead of random generation of initial population,
use of testers knowledge improves search performance.

Mueller and Wegener [30] GA Exec. time, processor cycles For WCET, estimates of static analysis provide an upper bound, evolutionary
testing gives a lower bound. For BCET, static analysis estimates provide a lower
bound, evolutionary testing constitutes an upper bound.

Puschner and Nossal [31] GA Exec. time, processor cycles & time units Further investigation is required to escape the large plateaus of equal fitness
function values.

Wegener et al. [33] GA Exec. time, processor cycles Static analysis techniques can support evolutionary testing in search space
reduction.

Groß [36] GA Exec. time, microseconds Evolutionary testability is inhibited by source code properties of small path
domains and high-data dependence.

Groß [35] GA Coverage of code annotations along
shortest and longest execution paths

The measures did not cater for the reliance on the parameter setting of the GA.
Effects of underlying hardware are not taken into account. The number of
considered data samples is low.

Groß et al. [34] GA Coverage of code annotations along
shortest and longest execution paths

Traditional design principles of low coupling and high cohesion are an
important issue for an evolutionary approach.

Tlili et al. [11] EGA Exec. time, processor cycles The nature of the test objects is not evident in the study. Using branch coverage
as a criterion for seeding has the limitation that it does not handle the execution
of all the possible values of the predicates forming the conditions.

Briand et al. [12] GA Exponential fitness function based
on the difference between executions
deadline and executions actual
completion

The termination criterion is not adaptive and is taken as fixed number of
generations. The specification of test cases does not require any running
implementation of system. It takes into account tasks synchronizations.
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In Canfora et al. [37], genetic algorithms were used to determine
the set of service concretizations (i.e. bindings between abstract
and concrete services) that lead to QoS constraint satisfaction while
optimizing the objective function. An abstract service is the feature
required in a service orchestration while concrete services repre-
sent functionally equivalent services realizing the required feature.
In a contract with potential users, the service provider can estimate
ranges for the QoS attributes as part of service level agreement
(SLA), i.e. a contract between an integrator and end-user for a given
QoS level. QoS attributes consist of non-functional properties such
as cost, response time and availability so the fitness function opti-
mized the QoS attribute chosen by the service integrator. The QoS
attributes of composite services were determined using rules with
aggregation function for each workflow construct. The fitness func-
tion was designed in a way to maximize some QoS attributes (e.g.
reliability and availability) while minimizing others (e.g. cost and
response time). Based on the type of penalty factor (static vs. dy-
namic), static fitness function and dynamic fitness functions were
proposed. With experiments on 18 invocations of 8 distinct abstract
services, the performance of genetic algorithms was compared with
integer programming. The results showed that when the number of
concrete services is small, integer programming outperformed ge-
netic algorithms. But as the number of concrete services increased,
genetic algorithm was able to keep its time performance while inte-
ger programming grew exponentially.

Di Penta et al. [38] used genetic algorithms to generate test data
that violated QoS constraints causing SLA violations. The generated
test data included combinations of inputs and bindings for the ser-
vice-oriented system. The test data generation process was com-
posed of two steps. In the first step, the risky paths for a
particular QoS attribute were identified and in the second step, ge-
netic algorithms were used to generate test cases that covered the
path and violated the SLA. The fitness function combined a dis-
tance-based fitness that rewards solutions close to QoS constraint
violation, with a fitness guiding the coverage of target statements.
The two fitness factors were dynamically weighted. The approach
was applied to two case studies. The first case study was an audio
processing workflow containing invocations to four abstract ser-
vices. The second case study, a service producing charts, applied
the black-box approach with fitness calculated only on the basis
of how close solutions violate QoS constraint. In case of audio
workflow, the genetic algorithm using the proposed fitness func-
tion, which combined distance-based fitness with coverage of tar-
get statements, outperformed random search. For the service
producing charts, use of black-box approach successfully violated
the response time constraint, showing the violation of QoS con-
straints for a real service available on the Internet.

A summary of results of applying metaheuristics for QoS-aware
composition and violation of SLA is given in Table 4.

3.3. Security

A variety of metaheuristic search techniques have been applied
to detect security vulnerabilities like detecting buffer overflows;
including grammatical evolution, linear genetic programming, ge-
netic algorithm and particle swarm optimization.

In Kayacik et al. [40], grammatical evolution (GE) was used to
discover the characteristics of a successful buffer overflow. The
example vulnerable application in this case performed a data copy
without checking the internal buffer size.

The exploit was represented by a sample C program that approx-
imated the desired return address and assembled the malicious buf-



Table 4
Summary of results applying metaheuristics for QoS-aware composition and violation of SLA. The last column on the right covers any issues such as constraints, limitations and
highlights. (GA is short for Genetic Algorithm.)

Article Applied
metaheuristic

Fitness function used Limitations and highlights

Canfora et al. [37] GA Based on the maximization of desired QoS attributes
while minimizing others, including a static or dynamic
penalty function

The QoS attributes of component services needs to be computed for
workflow constructs. The fitness function needs to incorporate the
constraints of balancing different QoS attributes. Also weights
need to be assigned to a particular QoS attribute to indicate
the importance.

Di Penta et al. [38] GA Combination of distance based fitness that rewards
solutions close to QoS constraint violation with a
fitness guiding the coverage of target statements

The study does not deal with the dependency of violation of some QoS
attributes on the network and server load. Instrumentation of the
workflow can cause probe effects which can cause the deviation
of fitness calculation.
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fer exploit. The malicious buffer contained a shell code, representing
attacker’s arbitrary code, that overwrites the return address to gain
control.

For the attack to be successful, it was important to jump to the
first instruction of the shell code or to the sequence of no operation
instructions called NoOP sled. The fitness function represented six
characteristics of malicious buffer which included existence of the
shell-code, success of the attack, NoOP sled score, back-to-back de-
sired return addresses, desired return address accuracy and score
calculated on NoOP sled size. Three sets of experiments were per-
formed, namely basic grammatical evolution (GE), GE with niching
(to include population diversity) and GE with niching and NoOP min-
imization. The results found were comparable. In Kayacik et al. [43],
the vulnerable system call was taken to be the UNIX execve com-
mand and linear GP was used to evolve variants of an attack. The
UNIX execve command required the registers EAX, EBX, ECX, EDX
to be correctly configured and the stack to contain the program name
to be executed. The fitness function returned a maximum fitness of
10 if all conditions were satisfied. The experimental results indicated
that evolved attacks discovered different ways of attaining sub-goals
associated with building buffer overflow attacks and expanding the
instruction set provided better results as compared to basic GP.

Kayacik et al. [23] used linear GP for automatic generation of
mimicry attacks to perform evasion of intrusion detection system
(IDS), which in this case was an open source target anomaly detec-
tor called stride. The candidate mimicry attacks were in the form
of system call sequences. The system call sequences consisted of
most frequently executed instructions from the vulnerable appli-
cation, which in this case is traceroute, a tool used to determine
the route taken by packets across an IP network.

An acceptable anomaly rate was established for stride. The
objective of the attacker therefore was to reduce the anomaly rate
below this acceptable limit. The study described an attack denoted
by successful completion of three steps i.e. open a UNIX password
file, write a line and close the file. The fitness function rewarded at-
tacks that successfully followed the steps and at the same time min-
imized the anomaly rate. The results showed that the approach was
able to reduce the anomaly rate to �2.97% for the entire attack.

In Dozier et al. [39], security vulnerabilities in an artificial im-
mune system (AIS) based IDS were identified using genetic algo-
rithms and particle swarm optimization. The study used
GENERITA Red Team (GRT), a system based on evolutionary algo-
rithms, which performed the vulnerability analysis of the IDS. The
AIS-based IDS communicates with the GRT by receiving red packets
in the form of attacks and returns the percentage of the detector set
that failed to detect the red packet. This percentage was the fitness
of the red packet. The packets took the form of triplets (ip_ad-
dress, port, src) while the AIS maintained a population of detec-
tors with different ranges of IP addresses and ports. Matching rules
were applied to match the data triple and a detector. The GRTs used
consisted of a steady-state GA and six variants of particle swarm
optimization. Experiments were performed using data representing
35 days of simulated network traffic. The results showed that ge-
netic algorithms outperform all of the swarms with respect to the
number of distinct vulnerabilities discovered.

Budynek et al. [41] modeled the hacker behavior along with the
creation of a hacker grammar for exploring hacker scripts using ge-
netic algorithms. A hacker script contained sequences of UNIX
commands issued by the hacker upon logging in to the system.
One script was one individual with a single UNIX command acting
as a gene. A fitness function was defined based on the efficiency
and effectiveness of the hacking scripts i.e. the script fitness value
was calculated by number of goals achieved, number of pieces of
evidence discovered by the log analyzer, number of bad commands
used by the hacker and the length of the script used by the hacker.
The results of experiments showed various top-scoring scripts ob-
tained from various runs.

Grosso et al. [42] used static analysis and program slicing to
identify vulnerable statements and their relationships, that were
further explored using genetic algorithms for buffer overflows.
Three different fitness functions were compared. The first one (vul-
nerable coverage fitness) included weighted values for statement
coverage, vulnerable statement coverage and number of execu-
tions of vulnerable statements. The second fitness function (nest-
ing fitness) incorporated observed maximum nesting level
corresponding to the current test case while the third fitness func-
tion (buffer boundary fitness) included a term accounting for the
distance from the buffer boundaries. Two programs were used
for experimentation. The case in which the expert’s knowledge
was used to define the initial search space and also for the case
having random initial population showed that buffer boundary fit-
ness outperformed both the vulnerable coverage and the nesting
fitness. This showed that fitness functions using distance from
the limit of buffers were helpful for deriving genetic algorithm evo-
lution. In DelGrosso et al. [44], the authors improved on the previ-
ous basic boundary fitness [42] to propose a dynamic weight
fitness in which the genetic algorithm weights were calculated
by solving a maximization problem via linear programming. So
with weights that could be tuned at each genetic algorithm gener-
ation, fast discovery of buffer overflows could be achieved. The dy-
namic weight fitness outperformed the previous basic boundary
fitness on experiments with two different sets of C applications.

A summary of results of applying metaheuristics for detecting
security vulnerabilities is given in Table 5.

3.4. Usability

Usability testing in the context of application of metaheuristics
is concerned with construction of covering array which is a combi-
natorial object.

The user is involved in numerous interactions taking place
through the user interface. With the number of different features
available and their respective levels, the interactions cannot be
tested exhaustively due to a combinatorial explosion. Interaction



Table 5
Summary of results applying metaheuristics for detecting security vulnerabilities. The last column on the right covers any issues such as constraints, limitations and highlights.
(GE is short for Grammatical Evolution, LGP is short for Linear Genetic Programming and PSO is short for Particle Swarm Optimization.)

Article Applied
metaheuristic

Fitness function used Limitations and highlights

Kayacik et al. [40] GE Representation of six characteristics of malicious
buffer reflecting multiple behavioral objectives

The shell code or the attackers arbitrary code needs
to be modified to increase the success chances of malicious buffer.

Kayacik et al. [43] LGP Fitness function based on the configuration of
registers and stack

A mechanism for maintaining diversity of population
is necessary.

Kayacik et al. [23] LGP Evaluation in terms of completion of steps leading
to an attack and minimization of anomaly rate

The proposed approach is dependent on the core attack which
is then used to create mimicry attacks. The approach is also
dependent on the set of permitted system calls as defined by the user.

Dozier et al. [39] GA, PSO Percentage of the detector set that failed to detect
the red packet from GRT

An attack is not as such constructed but is represented as
a triple packet.

Budynek et al. [41] GA The fitness is calculated based upon the scripts ability
of how much damage it can inflict with the most
compact possible sequence of commands

The goals of the hacker script grammar needs to be defined
beforehand.

Grosso et al. [42] GA Three different fitness functions covering vulnerable
statements, maximum nesting level and buffer boundary

Dependency on tools for static analysis and program slicing.
Use of instrumentation is a probable obstacle in expanding
the approach for larger case studies.

Grosso et al. [44] GA A dynamic weight fitness function in which the weight
determination is a maximization problem

Dependency on tools for static analysis and program slicing.
Use of instrumentation is a probable obstacle in expanding
the approach for larger case studies. Additional computational
time required for linear programming calculation.
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testing offers savings, in that it aims to cover every combination of
pair-wise (or t-way) interaction at least once [58]. It is interesting
to see that there are different competing constraints. On one hand,
the objective is high-coverage, while on the other hand the test
suite size needs to be small to reduce overall testing cost. Covering
array (CA) needs to be constructed to capture the t-way interac-
tions. For software systems, each factor (feature or component)
comprises of different levels (options or parameters or values),
therefore a mixed level covering array (MCA) is proposed. How-
ever, as compared to CA, there are few results on the upper bound
and construction algorithms for mixed level covering arrays, espe-
cially using heuristic search techniques [46]. Algebraic constructs,
greedy methods and metaheuristic search techniques have been
applied to construct covering arrays. Our interest here is to explore
the use of metaheuristic search techniques for constructing cover-
ing arrays. Hoskins et al. provide definitions relevant to covering
array and mixed level covering array [59]:

A covering array, CAkðN; t; k;vÞ, is an N � k array for which every
N � t sub-array has the property that every t-tuple appears at least
k times. In this application, t is the strength, k is the number of fac-
tors (degree), and v is the number of symbols for each factor
(order). When k is 1, every t-way interaction is covered at least
once; this is the case of most interest, and we often omit the sub-
script k when it is 1. The covering array is optimal if it contains
the minimum possible number of rows. The size of such a covering
array is the covering array number CANðt; k; vÞ.
A mixed level covering array, MCAkðN; t; k; ðv1;v2; . . . ;vkÞÞ, is an
N � k array in which, for each column i, there are exactly v i levels;
again every N � t sub-array has the property that each possible t-
tuple occurs at least k times. Again k is omitted from the notation
when it is 1. A mixed covering array provides the flexibility to con-
struct test suites for systems in which components are not
restricted to having the exact same number of levels.

To adapt to the practical concerns of software testing, it is desir-
able that some subset of features have higher interaction coverage.
For example, the overall system might have 100% two-way cover-
age, but a subset of features might have 100% three-way coverage.
To this end, in Cohen et al. [46], Cohen et al. propose variable
strength covering arrays. As with mixed level covering arrays, con-
struction methods and algorithms for variable strength test suites
is in its preliminary stages with [46] providing some initial results
for test suite sizes constructed using simulated annealing (SA).
With respect to the application of metaheuristics, the fitness
function used for constructing a covering array is the number
of uncovered t-subsets, so the covering array itself will have a
cost of 0. Since one does not know the size of the test suite a
priori, therefore, heuristic search techniques apply transforma-
tions to a fixed size array until constraints are satisfied. The re-
sults of implementing SA for handling t-way coverage in fixed
level cases are provided by Cohen et al. [46]. The results showed
that in comparison with greedy search techniques used in test
case generator (TCG) [60] and automatic efficient test generator
(AETG) [61], SA improved on the bounds of minimum test cases
in a test suite of strength two, e.g. for MCAðN; 2;513822Þ, SA gave
15 as minimum test cases as compared to 20 and 19 by TCG and
AETG, respectively. In case of strength 3 constructions, the SA
algorithm did not performe as well as the algebraic construc-
tions. Therefore, the initial results indicated SA as more effective
than other approaches for finding smaller sized test suites. On
the other hand, SA took much more execution time as compared
to simpler heuristics. Stardom [45] also used SA, GA and tabu
search (TS) for constructing covering arrays. The results indi-
cated that SA and TS were best in constructing covering arrays.
A genetic algorithm turned out to be least effective; taking more
time and moves to find good covering arrays. Stardom reported
new upper bounds on size of covering array using SA, some of
which were later improved by Cohen et al. [46]. Stardom’s study
indicated that SA’s main advantage was the capability of execut-
ing many moves in a short time; therefore if the search space
was dense, SA quickly located objects. On the other hand, TS
performed much better when the size of an array’s neighbor-
hood was smaller.

Along with the application of metaheuristic techniques for con-
structing covering arrays, there is also evidence of integrated ap-
proaches (Table 6). Cohen et al. [46] proposed one such approach
for using algebraic construction along with search techniques. An
example of this integrated approach is given in Cohen and Ling
[48] where a new strategy called augmented annealing takes
advantage of computational efficiency of algebraic construction
and generality of SA. Specifically, algebraic construction reduced
a problem to smaller sub-problems on which SA runs faster. The
experimental results reported new bounds for some strength three
covering arrays e.g. CAð3;6;6Þ and CAð3;10;10Þ. A hybrid approach
is also given in Bryce and Colbourn [51] for constructing covering
array. The study focussed on covering as many t-tuples as early



Table 6
Variants of approaches used for constructing covering arrays using metaheuristics.

Approach used Articles

Independent application of
metaheuristics

Cohen et al. [46,47], Stardom [45], Nurmela [49],
Shiba et al. [50]

Use of an integrated approach Cohen et al. [48], Bryce et al. [51]

Table 8
Cost function calculation.

Element Value

Boolean if TRUE then 0 else K

a ¼ b if abs(a - b)=0 then 0 else abs(a - b) + K

a – b if abs(a - b) – 0 then 0 else K

a < b if a - b < 0 then 0 else (a - b) + K

a � b if a - b � 0 then 0 else (a - b) + K

a > b if b - a < 0 then 0 else (b - a) + K

a � b if b - a � 0 then 0 else (b - a) + K

a _ b min(cost(a), cost(b))

a ^ b cost(a) + cost(b)

:a Negation propagated over a
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as possible. So rather than minimizing the number of tests to
achieve t-way coverage, the initial rate of coverage was the pri-
mary concern. The hybrid approach applied a one-test-at-a-time
greedy algorithm to initialize tests and then applied heuristic
search to increase the number of t-tuples in a test. The heuristic
search techniques applied were hill-climbing, SA, TS and great
flood. With different inputs, SA in general produced the quickest
rate of coverage with 10 or 100 search iterations. The study also
concluded that smaller test suites do not relate to greater rate of
coverage; hence two different and sometimes inconsistent goals
when applied in a real world setting.

As mentioned earlier, there is less evidence on construction of
variable strength arrays. One such study used SA to find variable
strength arrays and provided initial bounds [47]. In his work
using TS, Nurmela improved on previously known upper bounds
on the sizes of optimal covering arrays [49]. Experimenting with
number of factors and number of values for each factor, good
upper bounds were tabulated for strength-two covering arrays.
In addition, the study improved upper bounds for strength three
covering arrays. The TS algorithm was found to work best for
strength two covering array with number of levels for each factor
equal to three. According to [49], it was difficult to be sure about
the upper bounds to be optimal or not because TS being a sto-
chastic algorithm could improve upon the new bounds if given
more computing time.

Toshiaki et al. used genetic algorithms (GA) and ant colony algo-
rithm (ACA) for constructing covering arrays [50]. The results were
compared with AETG, in-parameter order (IPO) [62] algorithm and
SA. SA outperformed their results of using GA and ACA with respect
to the size of resulting test sets for two-way and three-way testing.
Their results however outperformed AETG for two-way and three-
way testing. It was interesting to find that using GA, the results did
not match with those produced by Stardom’s study [45] which
indicated that GA did not perform well in generating covering ar-
rays, even though several attempts were made to modify the struc-
ture of the algorithm.

A summary of results of applying metaheuristics for covering
array construction is given in Table 7.
Table 7
Summary of results applying metaheuristics for covering array construction. The last colum
short for Tabu Search, SA is short for Simulated Annealing, HC is short for Hill Climbing, A

Article Applied metaheuristic Fitness function used Li

Stardom [45] TS, SA and GA Number of uncovered
t-subsets

GA
La

Cohen et al. [46] SA and HC Number of uncovered
t-subsets

Th
Co

Cohen et al. [47] SA Number of uncovered
t-subsets

Va
an

Nurmela [49] TS Number of uncovered
t-subsets

If

Cohen et al. [48] SA Number of uncovered
t-subsets

A
al

Bryce et al. [51] TS, SA and HC Number of uncovered
t-subsets

SA

Toshiaki et al. [50] ACA, GA Number of uncovered
t-subsets

Th
3.5. Safety

Safety testing is an important component of the testing strategy
of safety critical systems where the systems are required to meet
safety constraints. In terms of metaheuristic search techniques,
SA and GA are applied for safety testing.

In Tracey et al. [52], the authors proposed an approach using
GAs and SA to generate test data violating a safety property. This
approach extended the authors’ previous work in developing a
general framework for dynamically generating test data. The vio-
lation of a safety property meant a hazard or a failure condition,
which was initially identified using some form of hazard analysis
technique e.g. functional hazard analysis. The fitness function
used evaluates different branch predicates and evaluates to zero
if the safety property evaluates to false and will be positive other-
wise. The search stopped when a test data with a zero cost was
found. The cost function calculation is presented in Table 8. where
K represents the penalty which was added for undesirable data
[52].

The paper provided a simple example where either SA or GAs
can be applied to automatically search for test data violating safety
properties that must hold ‘after’ the execution of the SUT. The same
given cost function can also be used to generate test data to violate
safety conditions at specific points ‘during’ the execution of the
SUT. In this case, the SUT needed to be instrumented such that
the branch predicates were replaced by procedures which served
two purposes of returning the boolean value of the predicate they
replaced and adding to the overall cost the contribution made by
each individual branch predicate that was executed. An example
was given with an original program and the instrumented program
with examples of how the fitness function was able to guide the
search.
n on the right covers any issues such as constraints, limitations and highlights. (TS is
CA is short for Ant Colony Algorithm and GA is short for Genetic Algorithm.)

mitations and highlights

takes more time and more moves to find a good covering array.
rger parameter sets require greater memory to store information.
ere is still no best method for building variable strength test suite.
mbining algebraic constructions with metaheuristic search is promising.
riable strength arrays guarantee a minimum strength of overall coverage
d allow varying the strength among disjoint subsets of components.
more computing time is given, many of the new bounds can be improved slightly.

tool can be designed to take advantage of combining combinatorial construction
ong with heuristic search.

provides the fastest rate of t-tuple coverage while TS is slowest.

e test sets generated are small but they are not always optimal.



968 W. Afzal et al. / Information and Software Technology 51 (2009) 957–976
The approach presented by Tracey et al. [52] has been extended
by Abdellatif-Kaddour et al. [53] for sequential problems. In
Abdellatif-Kaddour et al. [53], SA was used for step-wise construc-
tion of test scenarios (progressive exploration of longer test scenar-
ios) to test safety properties in cyclic real-time control systems.
The stepwise construction was required due to the sequential
behavior of the control systems as it was expected that safety
property violation will occur after execution of a particular trajec-
tory or sequence of data in the input domain. The test strategy was
applied to a steam boiler case study where the target safety prop-
erty was the non-explosion of the boiler. Along with the objective
of violating a safety property, there was a set of dangerous situa-
tions of interest when exploring progressive evolution towards
property violation. So the objective was not only violation of a tar-
get property but also to reach a dangerous situation. For the steam
boiler case study, there could be ten possible safety property viola-
tions and three dangerous situations. The solution space in this
case was divided into several subsets of smaller sizes. So different
classes of test sequences were independently searched. For each
class, the objective was defined into sub-objectives corresponding
to either safety property violation or the achievement of a danger-
ous situation. The overall cost was the minimum value of the dif-
ferent sub-objective cost functions. The efficiency of using SA
was analyzed in comparison with random sampling. The first
experiment showed that random sampling found test sequences
that fulfilled main objective more quickly than the approach using
SA. Therefore a revised SA was used in which the acceptance prob-
ability was adjusted to allow for significant moves in case of no
cost improvement. The revised version of SA offered significant
improvement over the basic version of SA, while in comparison
with random sampling a slight improvement was observed both
in terms of total number of iterations and successful search. The re-
sults of the study confirmed the usefulness of stepwise construc-
tion of test scenarios, but in terms of efficiency of SA algorithm,
the cost effectiveness as compared with random sampling remains
questionable.

In Baresel et al. [15,54], an evolutionary testing approach using
genetic algorithms was presented for structural and functional se-
quence testing. For complex dynamic system like car control sys-
tems, long input sequences were necessary to simulate these
systems. At the same time, one of the most important aims was
to generate a compact description for the input sequences, contain-
ing as few elements as possible but having enough variety to stim-
ulate the system under test as much as necessary. In order to have
a compact description of input sequences for a car control system,
the long input sequence was divided into sections. Each section
had a base signal having signal type, amplitude and length of sec-
tion as variables. These variables had bounds within which the
optimization generated solutions. The output sequences generated
by simulating the car control system were to be evaluated against a
Table 9
Summary of results applying metaheuristics for safety testing. The last column on the rig
Genetic Algorithm and SA is short for Simulated Annealing.)

Article Applied
metaheuristic

Fitness function used

Tracey et al. [52] GA and SA Evaluation of different branch predicates with zero
if the safety property evaluates to false and positi
cost otherwise

Kaddour et al. [53] SA Cost related to the violation of the safety property
achievement of dangerous situation

Baresel et al. [15],
and Pohlheim
et al. [54]

GA Problem specific fitness function measuring differ
properties e.g. signal amplitude boundaries
fitness function, which was defined according to the problem at
hand. For example, in case of a car control system, the fitness func-
tion checked for violations of signal amplitude boundaries. The ap-
plied fitness function consisted of two levels, which differentiated
quality between multiple output signals violating the defined
boundaries. An objective value of �1 indicated a severe violation
while for less severe violations, the closeness of the maximal value
to the defined boundary was calculated. The results of the experi-
ment performed on a car control system showed that the optimiza-
tion continually found better values and ultimately a serious
violation was detected.

A summary of results of applying metaheuristics for safety test-
ing is given in Table 9.

4. Discussion and areas for future research

The body of knowledge into the use of metaheuristic search
techniques for verifying the temporal correctness is geared to-
wards real-time embedded systems. For these systems, temporal
correctness must be verified along with the logical correctness.
The fact that there is a lack of support for dynamic testing of
real-time system for temporal correctness caused the research
community to take advantage of metaheuristic search techniques.
It is possible to differentiate the temporal testing research into two
dimensions. One of them focuses on violation of timing constraints
due to input values and most of the temporal testing research fol-
lows this dimension. The other dimension, which is the one taken
by Briand et al. [12] analyses task architectures and consider seed-
ing times of events triggering tasks and tasks’ synchronization, i.e.
Briand’s et al. study does not consider tasks in isolation. Both ap-
proaches to temporal verification are complementary.

The performance outcome information from studies related to
execution time are given in Table 10. It is fairly evident from the
table that GA consistently outperforms random and statistical test-
ing in wide variety of situations, producing comparatively longer
execution times faster and also finding new bounds on BCET. GAs
were also able to perform better than human testers and on occa-
sions where it failed to do so may be attributed to the complexity
of the test objects inhibiting evolutionary testability. With respect
to comparison with static analysis, GA performed comparably well
and both techniques are shown to bound the actual execution
times from opposite ends.

For execution time, genetic algorithms are used as the metaheu-
ristic in vast majority of cases (14 out of 15 papers), while SA finds
application in one of the studies. The preference of using genetic
algorithms over SA can be attributed to the very nature of search
mechanism inherent to genetic algorithms. Since a genetic algo-
rithm maintains a population of possible solutions, it has a better
chance of locating global optimum as compared to SA which pro-
ceed one solution at a time. Also due to the fact that temporal
ht covers any issues such as constraints, limitations and highlights. (GA is short for

Limitations and highlights

cost
ve

Experimentation on small scale problems, thus results are preliminary.
Instrumentation of the test objects is a challenge in the scalability of the
technique.

and Using SA, many trials are necessary for investigating alternative design
choices and calibrating the corresponding parameters. More
experimentation is required to confirm the efficiency applying revised SA
algorithm.

ent The input sequences must be long enough and should have the right
attributes to stimulate the system. The output sequence must be evaluated
according to the problem under investigation.



Table 10
Key evaluation information and outcomes of execution time studies. (GA is short for Genetic Algorithm, EGA is short for Extended GA, while SA is short for Simulated Annealing.)

Article and
metaheuristic

Method of evaluation Test objects Performance factor evaluated Outcomes of the experiment

Wegener et al.
[25], GA

Comparison with statistical
and systematic testing

Simple C function Finding WCET/BCET and number
of generations

The longest execution time was
found very fast and a new shortest
execution time was found, not
previously discovered by statistical
and systematic testing

Alander et al. [26],
GA

Comparison with random
testing

Relay software simulator Finding processing time
extremes

GA generated input data with longer
response times

Wegener et al.
[27], GA

Comparison with statistical
and systematic testing

5 programs with up to 1511 LoC
and 843 integer input
parameters

Finding WCET/BCET and the
number of tests required

GA found more extreme times
although on occasions required more
tests to do so

Wegener and
Grochtmann
[10], GA

Comparison with random
testing

8 programs with up to 1511 LoC
and 5000 input parameters

Finding WCET/BCET and the
number of tests required

GA always obtained better results as
compared with random testing

O’Sullivan et al.
[28], GA

Comparison with different
termination criteria i.e.
limiting the number of
generations, time spent on
test and examining the
fitness evolution

An algorithm from automotive
electronics

Convergence analysis of various
termination criteria

Cluster analysis turned out to be a
more powerful termination criterion
which allowed quick location of local
optima

Tracey et al. [29],
SA

Comparison in terms of size
of parameter space to
search

4 programs (conditional blocks,
simple loop, binary integer
square root and insertion sort)

Finding WCET SA successfully executed a worst case
path and was more effective with
larger, complex parameter space

Pohlheim and
Wegener [32],
EGA

Comparison with
systematic testing

Modules from a motor control
system

Finding maximum execution
times

GAs found longer execution times for
all the given modules

Mueller and
Wegener [30],
GA

Comparison with static
analysis

5 experiments with industrial
and reference applications

Finding WCET/BCET Use of evolutionary testing and static
analysis bounded the actual
execution times from opposite ends
and were complementary

Puschner and
Nossal [31], GA

Comparison with static
analysis and random testing

7 programs with diverse
execution time characteristics

Finding WCET For large input data space, GA
outperformed random method. In
comparison with static analysis, the
performance of GA is comparable

Wegener et al.
[33], GA

Comparison with execution
time found with developers
test

An engine control system with 6
time critical tasks

Finding WCET Longer execution times were found
with the evolutionary test than with
the developer tests

Groß [36], GA Random test case
generation and
performance of an
experienced human tester

15 example test programs Finding WCET Evolutionary testing generated more
worst-case times as compared with
random testing. Also for only 4 out of
15 test objects the human tester was
more successful

Groß [35], GA None 21 test objects of varying input
size

Evolutionary testability The prediction system forecasted
evolutionary testability with almost
90

Groß et al. [34],
GA

None 22 test objects with varying
input sizes

Evolutionary testability Evolutionary testability and
complexity of test objects was found
to be interrelated

Tlili et al. [11],
EGA

Standard evolutionary real-
time testing with random
initial population and no
search space restriction

12 test objects with varying
cyclomatic complexity

Finding longer execution times Using range restriction and seeding
initial population with data achieving
high structural branch coverage,
longer execution times were found
for most of the test objects except for
two

Briand et al. [12],
GA

None Two case studies, one of
researchers own scenarios and
the second consisted of an actual
real time system

Maximizing critical deadline
misses

It was possible to identify seeding
times such that small errors in the
execution time estimates could lead
to missed deadlines
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behavior of real-time systems always results in complicated multi-
dimensional search space with many plateaus and discontinuities,
genetic algorithms are suitable since they perform well for prob-
lems involving large number of variables and complex input
domains.

There is another way of analyzing the body of knowledge into
the use of metaheuristics for testing temporal correctness; which
is in terms of (1) properties associated with the metaheuristic itself
and (2) properties related to the SUT (test object). In terms of
metaheuristic, the research focuses on improving multiple issues:
reduction in search space, comparative studies with static analysis,
selection schemes for initial population of genetic algorithm, eval-
uation of suitable termination criterion for search, choice of fitness
function, mutation and crossover operators and search for robust
and appropriate parameters. In terms of test objects, the research
focuses on properties of test objects inhibiting evolutionary test-
ability and formulation of complexity measures for predicting evo-
lutionary testability (Fig. 4).

The fact that seeding the initial population of an evolutionary
algorithm with test data having high structural coverage has had
better results, it would be interesting to design a fitness function
that takes into account structural properties of individuals. Then
it will be possible not only to reward individuals on the basis of
execution time but also on their ability to execute complex parts
of the source code. Similarly, there are different types of structural
coverage criteria, which can be used to seed initial populations and
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might prove helpful in the design of a fitness function that takes
into account such a structural coverage criterion.

In terms of reliable termination criterion for evolutionary test-
ing, use of cluster analysis is found to be useful over other termina-
tion criteria, e.g. number of generations and examination of fitness
evolution. However, to the authors’ knowledge, the use of cluster
analysis as a termination criterion is used in only one study [28].
Cluster analysis information can be used to change the search
strategy in a way that escapes local optima and helps exploring
more feasible areas of the search space. Also the performance of
evolutionary algorithms can be made much better by using robust
parameters. The search for these parameters is still on. Similarly,
variations of existing algorithms e.g. like using extended evolution-
ary algorithms might give interesting insights into the perfor-
mance of evolutionary testing.

We also gathered studies regarding application of metaheuristic
search techniques for quality of service aware composition and
violation of service level agreements (SLAs) between the integrator
and the end user. Genetic algorithms have been applied to tackle
the QoS-aware composition problem as well as generation of in-
puts causing SLA violations. Table 11 show that in comparison with
linear integer programming and random search, genetic algorithms
were more successful in meeting QoS constraints. We also infer
that the testing of service-oriented systems has inherently several
issues. These include testability problems due to lack of observabil-
ity of service code and structure, integration testing issues due to
the use of late-binding mechanisms, lack of control and involved
cost of testing [38]. These issues raises the need for adequate test-
ing strategies and approaches tailored for service-oriented sys-
Fig. 4. Two ways to analyze temporal te

Table 11
Key evaluation information and outcomes of QoS studies. (GA is short for Genetic Algorith

Article and
metaheuristic

Method of
evaluation

Test objects Performance factor evalu

Canfora et al.
[37], GA

Linear
integer
programming

A workflow containing 18
invocations of 8 distinct
abstract services

Convergence times of in
programming and GA fo
achieved solution

Di Penta et al.
[38], GA

Random
search

Audio processing workflow
and a service for chart
generation

Violation of QoS constra
time required to conver
solution
tems. In terms of QoS, different attributes are of interest and are
competing e.g. cost, response time, availability and reliability.
These attributes need to be computed for workflow constructs.
Empirical evidence has to be gathered for a thorough comparison
of genetic algorithms with non-linear integer programming for
QoS-aware service composition. Also network configurations and
server load, being one of the factors causing SLA violations, is to
be accounted for generating test data violating the SLA.

Buffer overflow attacks compromises the security of applica-
tions. The attacker needs three requirements for a successful ex-
ploit, (i) a vulnerable program within the target system (ii)
information of the size of memory reference necessary to cause
the overflow and (iii) the correct placement of a suitable exploit
to make use of the overflow when it occurs [43]. In order to guide
the interpretation of findings, performance outcomes are summa-
rized in Table 12, in addition to Table 5. The range of studies offers
variations with respect to the main theme, although all have the
common goal of addressing security testing. Therefore, we see
studies making use of metaheuristic search techniques to create
a range of successful attacks to evade common intrusion detection
systems as well as to identify buffer overflows. For detecting buffer
overflows, the attacker’s arbitrary code needs modification to in-
crease the success chances of creating a malicious buffer. In case
of hacker scripts generation, the goals for the hacker script gener-
ation needs to be defined. The use of metaheuristic search tech-
niques includes grammatical evolution, linear genetic
programming, genetic algorithm and particle swarm optimization.
Devising a useful fitness function is the focus of majority of the
studies which highlights the difficulty in instrumenting security is-
sting research using metaheuristics.

m.)

ated Outcomes of the experiment

teger
r the same

When the number of concrete services available for each abstract
service is large, GA should be preferred instead of integer
programming. On the other hand, whenever the number of concrete
services available is limited, integer programming is to be preferred

int and
ge to a

The new approach outperformed random search and successfully
violated QoS constraints



Table 12
Key evaluation information and outcomes of security studies. (GA is short for Genetic Algorithm, GE is short for Grammatical Evolution, while PSO is short for Particle Swarm
Optimization.)

Article and
metaheuristic

Method of evaluation Test objects Performance factor evaluated Outcomes of the experiment

Dozier et al. [39], GA
and PSO

Comparison of steady state GA and six
variants of PSO

1998 MIT Lincoln Lab Data To discover holes (Type II
errors/false negatives)

GA outperformed all of the swarms
with respect to number of distinct
vulnerabilities discovered

Kayacik et al. [40], GE
(basic, niching and
niching & NoOP
minimization)

Detection (or not) of each exploit
through the Snort misuse detection
system

A simple (generic) vulnerable
application performing a data
copy without checking the
internal buffer size

The number of alerts that
Snort generates when attacks
are executed

The results from three variants of GE
were comparable

Budynek et al. [41],
GA

Results from a log analyzer Automatic generation of
computer hacker scripts (a
sequence of Unix commands)

Evidence collection from the
logs

Various top scoring scripts were
obtained

Grosso et al. [42], GA Comparison of three different fitness
functions namely vulnerable coverage
fitness, nesting fitness and buffer
boundary fitness

A white-noise generator and a
function contained in the ftp
client

Modified t-test to compare
fitness values of three fitness
functions across the two test
objects

A fitness function accounting for the
distance from the buffer boundaries
outperformed fitness function not
using the same factor

Grosso et al. [44], GA The fitness that does not use dynamic
weighing

Two different sets of C
applications

A comparison of fitness
values of competing fitness
cases in terms of number of
generations

The new fitness function outperformed
the comparable ones

Kayacik et al. [43],
Linear GP

Evaluation of a new approach Three experiments with
different data sets

Avoidance of attack detection
by Snort, the network based
intrusion detection system

The evolved attacks discovered
different ways of attaining sub-goals
associated with building buffer
overflow attacks

Kayacik et al. [23],
Linear GP

Compares two fitness functions
(incremental and concurrent) in
detecting anomaly rate

Instruction set consisting of
most frequently occurring
system calls

Measurement of alarm rate
indicating evasion of Stride,
the anomaly host based
detection system

Reduction of anomaly rate from � 65%

to � 2:7%
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sues as an appropriate search metric. Most of the fitness functions
are based on the ability of the attack to fulfill the conditions neces-
sary for a successful exploit. This has resulted in studies comparing
the performances of different fitness functions rather than compar-
ing with traditional approaches to security testing. This indicates
that most of the studies into use of metaheuristics for this domain
is largely exploratory and no trends are observable that can be gen-
eralized. Due to this we see authors experimenting with simple
and small applications on a limited scale. The scalability of these
approaches, with larger data sets and greater number of trials, is
an interesting area of future research. The work of Kayacik et al.
[40,43,23] is notable as they move towards a general framework
for attack generation based on the evolution of system call se-
quences. Also the co-evolution of attacker-detector pairs (as
pointed out by Kayacik et al. [23]) that provides the opportunity
to actually preempt new attack behaviors before they are encoun-
tered, formulation of techniques (like static analysis and program
slicing) to reduce the search space for the evolutionary algorithm,
hybridization of GA and PSO algorithm for effective searching and
creation of an interactive tool for vulnerability assessment based
on evolutionary computation for the end users provides further fu-
ture extensions.

In the area of usability, we found the application of metaheuris-
tic search techniques for constructing covering arrays. Being a
qualitative attribute, usability possesses different interpretations.
However, we classify studies reporting construction of covering ar-
rays under usability as they relate to a form of interaction testing
covering t-way user interactions whereby each test case exposes
different areas of a user interface. The research for construction
of covering arrays for software testing have dual focus of finding
new techniques to produce smaller covering arrays and to produce
them in reasonable amount of time. As expected, a trade-off must
be achieved between computational power and size of resulting
test suites. The extent of evidence related to applying metaheuris-
tics for finding better bounds on covering arrays suggest that meta-
heuristics are very successful for smaller parameter sets. For larger
parameter sets, the heuristic algorithms run slowly due to the large
amount of memory required (to store information). Therefore, exe-
cution time is a known barrier in finding more results using meta-
heuristic search algorithms. One obvious way to achieve efficient
memory management is to reuse the previously calculated t-com-
binations by storing them in some form of a temporary memory.
Also as mentioned earlier, the size of the test suite is not known
a priori, many sizes must be tested for obtaining a good bound
on a t-way test set of given size.

It is also worth mentioning that finding optimal parameters for
effectively using metaheuristics require many trials, moreover it is
difficult to be sure whether the upper bounds produced are opti-
mal or not because further improvements on bounds can take
place if given more computing time. In addition to Table 7, we
summarize key evaluation information and outcomes in Table 13.
We gather that a range of metaheuristics have been applied for
constructing covering arrays. This includes SA, TS, GA and ant col-
ony optimization. We find SA and TS to be widely applicable search
techniques, particularly SA being applied to generate smaller sized
test suites. Out of seven primary studies, five report using SA while
three use TS, either being used independently or in combination
with other search techniques and algebraic constructions. We infer
from Table 13, SA consistently performs better than GA, HC, ACA
and TS in terms of size of resulting test sets. The performance of
SA can further be improved by integrating it with the use of alge-
braic constructions. Another possibility is to begin with a greedy
algorithm (like TCG) and then make a transition to heuristic search
after meeting a certain condition [46]. GA has been applied in two
studies with contradictory results and hence requires further
experimentation. An interesting area is to explore the use of ant
colony optimization to generalize initial results given by [50]. In
terms of construction of variable strength covering arrays, there
is a potential for further research for finding the best approach
for variable strength test suite.

Safety testing is used to test safety critical systems that have to
satisfy the safety constraints in addition to satisfying the functional



Table 13
Key evaluation information and outcomes of usability studies. (GA is short for Genetic Algorithm, TS is short for Tabu Search, SA is short for Simulated Annealing, HC is short for
Hill Climbing, PSO is short for particle swarm optimization while, ACA is short for Ant Colony Algorithm.)

Article and
metaheuristic

Method of evaluation Test objects Performance factor evaluated Outcomes of the experiment

Stardom [45],
SA, TS and
GA

Comparison of SA, TS and
GA

Different sizes of covering arrays,
CA(13,11:1), CA(9,7:1), CA(7,6:1)

Three tests to find the best
arrays possible in the shortest
amount of time

GA was ineffective at finding quality arrays when
compared with TS and SA. SA in general was found to
be very useful for finding covering arrays of various
sizes while when the size of an arrays neighborhood
was smaller, TS was able to find much better arrays

Cohen et al.
[46], SA
and HC

Comparison of SA, HC and
greedy methods (AETG,
TCG)

Different sizes of mixed covering
arrays and fixed covering arrays

Number of test cases in a test
suite and time required to
obtain them

HC and SA improved on bounds given by AETG and
TCG, SA consistently performed well or better than HC

Cohen et al.
[47], SA

Presentation of results for a
new combinatorial object
(variable strength covering
array)

Minimum, maximum and
average sizes of different
variable strength covering arrays

Minimum, maximum and
average sizes of variable
strength covering arrays after
10 runs of SA

Variable strength covering arrays of different sizes

Nurmela [49],
TS

Comparison with best
known upper bounds

Upper bounds on g2ðZq
nÞ for small

q and n
Size of the covering array The search algorithm worked best for t=2 and q=3

Cohen et al.
[48], SA

Comparisons with strength
three covering arrays

Several bounds for strength three
covering arrays

Size of strength three covering
array

Combination of combinatorial construction and SA
presented new bounds for some strength 3 covering
arrays

Bryce et al.
[51], TS,
SA, HC

Comparisons among TS, SA
and HC

Two inputs with factors having
equal number of levels and two
inputs having mixed number of
levels

Rate of t-tuple coverage SA had the fastest rate of t-tuple coverage

Toshiaki et al.
[50], ACA,
GA

Comparisons with AETG, IPO
and SA algorithms for the
cases t ¼ 2 and t ¼ 3

Covering arrays and mixed
covering arrays of strength 2 and
3

Size of resulting test sets and
amount of time required for
generation

For t=2, GA and ACA performed comparable to AETG.
For t=3, GA and ACA outperformed AETG. SA
outperformed GA and ACA with respect to size of the
resulting test sets
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specification. We take safety in terms of dangerous conditions,
which may contribute to an accident. There are two approaches
for achieving verification of safety properties: dynamic testing
and static analysis. Static analysis does not require execution of
the safety critical system while dynamic testing executes the sys-
tem in a suitable environment with test data generated to test
safety properties. Both static analysis and dynamic testing are
complementary approaches; in many cases the results of static
analysis are used to give criteria for dynamic testing (as in Tracey
et al. [52]). The available primary studies discussing testing of
safety properties can be differentiated into two themes. One is
the case where generation of separate inputs is discussed to test
the safety property while the other case discusses generation of se-
quence of inputs.

The performance outcomes for studies related to safety testing
are given in Table 14. The studies show that SA and GAs are ap-
plied in the context of safety testing, GA being more successfully
applied. However, the results suggest a need for further experi-
mentation in terms of investigating alternative design choices
Table 14
Key evaluation information and outcomes of safety studies. (GA is short for Genetic Algor

Article and
metaheuristic

Method of evaluation Test objects Perform

Tracey et al.
[52], GA
and SA

Comparison of safety conditions obtained
from software fault tree analysis and
functional specification

Small size
functions used
in the pre-
proof step

Finding
implem
propert

Kaddour et al.
[53], SA

Effectiveness in terms of finding
appropriate test sequences and efficiency in
terms of comparing the speed of SA with
random sampling

Non-explosion
of the steam
boiler

Finding
lead to
dangero

Baresel et al.
[15],
Pohlheim
et al. [54],
GA

None Dynamic car
control system

Violatio
for outp
the sim
system
and calibration of algorithmic parameters. This is desirable espe-
cially when the extensions to the basic approaches of safety test-
ing can be applied to fault injection, testing for exception
conditions and testing for safe component reuse and integration
[52]. In terms of alternate design choices, we see in Abdellatif-
Kaddour et al. [53] that the efficiency of SA is dependent on the
initial solution because when no cost improvement is observed,
the search does not allow moves larger than those authorized
by the neighborhood function. Therefore, improvement in the effi-
ciency of the SA algorithm can be achieved by searching else-
where then the neighborhood of the current solution if no cost
improvement is made. Further experimentation is also desirable
in terms of safety testing real world applications, however, the
instrumentation required for testing of safety conditions is a chal-
lenge with respect to the scalability of the technique. Also, since
the design choices are highly dependent on the nature of the
safety critical system, it is consequently important to include
more problem specific knowledge into the representation of solu-
tions and design of fitness function.
ithm, while SA is short for Simulated Annealing.)

ance factor evaluated Outcomes of the experiment

test data that causes an
entation to violate a safety
y

The approach might be useful not only for safety
verification but also for integration with fault
injection, testing for exception conditions and testing
for safe component reuse

the test sequence that
either an explosion or a
us situation

Both random search and SA were effective while
random search was more efficient

n of defined requirements
ut sequence generated by

ulation of the dynamic

It was possible to generate real world input sequences
causing violations of a given safety requirement
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We can infer from this review that search-based testing is
poorly represented in the testing of non-functional properties.
While search-based software engineering might be transitioning
from early optimistic results to more in-depth understanding of
the associated problems [2], search-based testing of non-functional
properties is still ad-hoc and largely exploratory. The main reasons
that can be attributed to this trend are the difficulties associated
with instrumenting non-functional properties as fitness functions
and also difficulties in generalizing search-based testing of non-
functional properties on a broader scale due to strictly domain spe-
cific nature of existing studies. With the majority of studies in
search-based software testing applied to functional testing, the
use of metaheuristic search techniques for testing non-functional
properties is rather limited and, with exception to execution time
studies, are very problem specific. We believe that it is important,
in order to develop the currently emerging field of search-based
software testing, to analyze the applicability of search techniques
in testing of diverse non-functional properties which can then trig-
ger the second phase of exploration requiring a deeper understand-
ing of problem and solution characteristics [2].
5. Validity threats

There can be different threats to the validity of study results.
Conclusion validity refers to the statistically significant relation-

ship between the treatment and the outcome [63]. One possible
threat to conclusion validity is biasness in applying quality assess-
ment and data extraction. In order to minimize this threat, we
explicitly define the inclusion and exclusion criteria, which we be-
lieve is detailed enough to provide an assessment of how we
reached the final set of papers for analysis. With respect to the
quality assessment, we wanted to be as inclusive as possible, so
we resorted to a binary ‘yes’ or ‘no’ scale rather than assigning
any scores. We made sure to a large extent include instead of ex-
clude references, hence making sure not to place, by mistake, any
relevant contributions in the ‘no’ category. To assess the consis-
tency of data extraction, a small sample of primary studies were
used to extract data for the second time.

Internal validity refers to a causal relationship between treat-
ment and outcome [63]. One threat to internal validity arises from
unpublished research that had undesired outcomes or proprietary
literature that is not made available. It is difficult to find such grey
literature; however we acknowledge that inclusion of such litera-
ture would have contributed in increasing internal validity.

Construct validity is concerned with the relationship between
the theory and application [63]. One possible threat to construct
validity is exclusion of relevant studies. In order to minimize this
threat, we defined a rigorous search strategy (Section 2.2), which
included two phases, to ultimately protect us against threats to
construct validity.

External validity is concerned with the generalization of results
outside the scope of the study [63]. We can relate it to the degree
to which the primary studies are representative of the overall goal
of the review. We believe that our review protocol helped us
achieve a representative set of studies to a greater extent. During
the course of scanning references, the authors also came across
two studies by Schultz et al. [64,65], applying evolutionary algo-
rithms for the robustness testing of autonomous vehicle control-
lers. We do not include these two studies in our analysis since
these studies were published in 1992 and 1995, which are outside
the time span (1996–2007) of this review. Furthermore, we did not
anticipate finding other relevant studies outside the time span of
1996–2007 as previous relevant surveys supports such a choice
of time span.
6. Conclusions

This systematic review investigated the use of metaheuristic
search techniques for testing non-functional properties of the
SUT. The 35 primary studies are distributed among execution time
(15 papers), quality of service (2 papers), safety (4 papers), security
(7 papers) and usability (7 papers). While scanning references, we
also found two papers relating to robustness testing of autono-
mous vehicle controllers [64,65] but we do not include these two
papers in our review as they were outside the time span of our
search (1996–2007).

Within execution time testing, genetic algorithms finds applica-
tion in 14 out of 15 papers. The research trend within execution
time testing is more towards violation of timing constraints due
to input values; however, the paper by Briand et al. [12] provides
another research approach that analyzes the task architectures
and consider seeding times of events triggering tasks and tasks’
synchronization. In terms of use of fitness function, we find three
variations; the execution time measured in CPU clock cycles, cov-
erage of code annotations inserted along shortest and longest algo-
rithmic execution paths and the fitness function based on the
difference between execution’s deadline and execution’s actual
completion. The challenges identified include dealing with poten-
tial probe effects due to instrumentation and uncertainty about
global optimum, finding appropriate and robust search parameters
and a having a suitable termination criteria of search.

Within Quality of Service (QoS), the two papers apply genetic
algorithms to determine the set of service concretizations that lead
to QoS constraint satisfaction and to generate combinations of
bindings and inputs causing violations of service level agreements.
One of the papers uses a fitness function based on the maximization
of desired QoS attributes while minimizing others and includes the
possibility of having static or dynamic fitness function. The other
paper uses a fitness function that combines distance-based fitness
with a fitness guiding the coverage of target statements. The chal-
lenges include the need to compute QoS attributes of component
services for workflow constructs and to deal with the possibility
of deviation of fitness calculation due to workflow instrumentation.

In security testing; genetic algorithms, linear genetic program-
ming, grammatical evolution and particle swarm optimization
have been applied. The applied fitness functions used different rep-
resentations for the completion of conditions leading to successful
exploits. Modifications to the attacker’s arbitrary code and finding
appropriate goals for hacker script generation are identified as the
challenges for security testing.

Within usability testing, metaheuristic search techniques are ap-
plied to find better bounds on covering arrays. A variety of metaheu-
ristic search techniques are applied including SA, TS, GA and ant
colony algorithms. The fitness function used is the number of uncov-
ered t-subsets. Execution time is a major challenge in this case as for
large parameter sets, the metaheuristic algorithms run slowly due
to the large amount of memory required to store information.

In safety testing, we find two research directions to test safety
properties of the SUT. One makes use of generation of separate in-
puts to test the safety property, while the other uses a sequence
of inputs. Simulated annealing and genetic algorithms are the
used metaheuristics and the fitness function takes into account
the violation of various safety properties. The incorporation of
problem specific knowledge into the representation of solution
and design of fitness function presents a challenge for the appli-
cation of metaheuristic search techniques to test safety
properties.

We believe that there is still plenty of potential for automating
non-functional testing using search-based techniques and we ex-
pect that studies involving NFSBST will increase in the following
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years. The results of our systematic review also indicate that the
current body of knowledge concerning search-based software test-
ing does not report studies on many of the other non-functional
properties. On the other hand, there is a need to extend the early
optimistic results of applying NFSBST to larger real world systems,
thus moving towards a generalization of results.
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Appendix A. Search strings and study quality assessment

– Abstracts: (evolutionary OR heuristic OR search-based OR
metaheuristic OR optimization OR hill-climbing OR simu-
lated annealing OR tabu search OR genetic algorithms OR
genetic programming) AND (‘‘software testing” OR ‘‘testing
software” OR ‘‘test data generation” OR ‘‘automated testing”
OR ‘‘automatic testing”) AND (non-functional OR safety OR
robustness OR stress OR security OR usability OR integrity
OR efficiency OR reliability OR maintainability OR testability
OR flexibility OR reusability OR portability OR interoperabil-
ity OR performance OR availability OR scalability).

– Titles: (evolutionary OR heuristic OR search-based OR meta-
heuristic OR optimization OR hill-climbing OR simulated
annealing OR tabu search OR genetic algorithms OR genetic
programming) AND (testing) AND (non-functional OR safety
OR robustness OR stress OR security OR usability OR integrity
OR efficiency OR reliability OR maintainability OR testability
OR flexibility OR reusability OR portability OR interoperabil-
ity OR performance OR availability OR scalability).

– Keywords: (evolutionary OR heuristic OR search-based OR
metaheuristic OR optimization OR hill-climbing OR simu-
lated annealing OR tabu search OR genetic algorithms OR
genetic programming) AND (‘‘software testing” OR ‘‘testing
software” OR ‘‘test data generation” OR ‘‘automated testing”
OR ‘‘automatic testing”) AND (non-functional OR safety OR
robustness OR stress OR security OR usability OR integrity
OR efficiency OR reliability OR maintainability OR testability
OR flexibility OR reusability OR portability OR interoperabil-
ity OR performance OR availability OR scalability).
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